Engineering Tables/Z Transform Properties: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Pi zero
{{BookCat}}
 
(No difference)

Latest revision as of 02:02, 5 August 2017

Template:BookCat

Time domain Z-domain ROC
Notation x[n]=𝒵1{X(z)} X(z)=𝒵{x[n]} ROC: r2<|z|<r1 
Linearity a1x1[n]+a2x2[n]  a1X1(z)+a2X2(z)  At least the intersection of ROC1 and ROC2
Time shifting x[nk]  zkX(z)  ROC, except z=0  if k>0 and z= if k<0 
Scaling in the z-domain anx[n]  X(a1z)  |a|r2<|z|<|a|r1 
Time reversal x[n]  X(z1)  1r2<|z|<1r1 
Conjugation x*[n]  X*(z*)  ROC
Real part Re{x[n]}  12[X(z)+X*(z*)] ROC
Imaginary part Im{x[n]}  12j[X(z)X*(z*)] ROC
Differentiation nx[n]  zdX(z)dz ROC
Convolution x1[n]*x2[n]  X1(z)X2(z)  At least the intersection of ROC1 and ROC2
Correlation rx1,x2(l)=x1[l]*x2[l]  Rx1,x2(z)=X1(z)X2(z1)  At least the intersection of ROC of X1(z) and X2(z1)
Multiplication x1[n]x2[n]  1j2πCX1(v)X2(zv)v1dv  At least r1lr2l<|z|<r1ur2u 
Parseval's relation x1[n]x2*[n]  1j2πCX1(v)X2*(1v*)v1dv 
  • Initial value theorem
x[0]=limzX(z) , If x[n] causal
  • Final value theorem
x[]=limz1(z1)X(z) , Only if poles of (z1)X(z)  are inside unit circle