Trigonometry/For Enthusiasts/Less-Used Trig Identities: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Pi zero
{{BookCat}}
 
(No difference)

Latest revision as of 20:55, 10 January 2018

Triangle Identities

In addition to the Law of Sines, the Law of Cosines, and the Law of Tangents, there are numerous other identities that apply to the three angles A, B, and C of any triangle (where A+B+C=180° and each of A, B, and C is greater than zero). Some of the most notable ones follow:

cos2(A)+cos2(B)+cos2(C)+2cos(A)cos(B)cos(C)=1
sin(A)+sin(B)+sin(C)=4cos(A2)cos(B2)cos(C2)
tan(A)+tan(B)+tan(C)=tan(A)tan(B)tan(C)
tan(A2)tan(B2)+tan(B2)tan(C2)+tan(C2)tan(A2)=1
cot(A)cot(B)+cot(B)cot(C)+cot(C)cot(A)=1
cot(A2)cot(B2)cot(C2)=cot(A2)+cot(B2)+cot(C2)
sin(A)sin(B)sin(C)=1(cot(A)+cot(B))(cot(B)+cot(C))(cot(C)+cot(A))
sin(A)+sin(B)sin(C)sin(A)+sin(B)+sin(C)=tan(A2)tan(B2)

Pythagoras

sin2(x)+cos2(x)=1
1+tan2(x)=sec2(x)
1+cot2(x)=csc2(x)

These are all direct consequences of Pythagoras's theorem.

Sum/Difference of angles

cos(x±y)=cos(x)cos(y)sin(x)sin(y)
sin(x±y)=sin(x)cos(y)±sin(y)cos(x)
tan(x±y)=tan(x)±tan(y)1tan(x)tan(y)

Product to Sum

2sin(x)sin(y)=cos(xy)cos(x+y)
2cos(x)cos(y)=cos(xy)+cos(x+y)
2sin(x)cos(y)=sin(xy)+sin(x+y)

Sum and difference to product

Asin(x)+Bcos(x)=Csin(x+y) , where C=A2+B2 and y=±arctan(BA)
sin(A)±sin(B)=2sin(A±B2)cos(AB2)
cos(A)+cos(B)=2cossin(A+B2)cos(AB2)
cos(A)cos(B)=2sin(A+B2)sin(AB2)

Multiple angle

cos(2x)=cos2(x)sin2(x)=2cos2(x)1=12sin2(x)
sin(2x)=2sin(x)cos(x)
tan(2x)=2tan(x)1tan2(x)
cot(2x)=cot(x)tan(x)2
csc(2x)=cot(x)+tan(x)2
cos(3x)=4cos3(x)3cos(x)
sin(3x)=4sin3(x)+3sin(x)
tan(3x)=3tan(x)tan3(x)13tan2(x)
cos(4x)=8cos4(x)8cos2(x)+1
sin(4x)=4sin(x)cos3(x)4sin3(x)cos(x)
sin2(4x)=16[sin2(x)5sin4(x)+8sin6(x)4sin8(x)]
tan(4x)=4tan(x)4tan3(x)16tan2(x)+tan4(x)
cos(5x)=16cos5(x)20cos3(x)+5cos(x)
sin(5x)=16sin5(x)20sin3(x)+5sin(x)
tan(5x)=5tan(x)10tan3(x)+tan5(x)110tan2(x)+5tan4(x)
cos(6x)=32cos6(x)48cos4(x)+18cos2(x)1
cos(7x)=64cos7(x)112cos5(x)+56cos3(x)7cos(x)
sin(7x)=64sin7(x)+112sin5(x)56sin3(x)+7sin(x)
cos(8x)=128cos8(x)256cos6(x)+160cos4(x)32cos2(x)+1
cos(nx)=2cos(x)cos((n1)x)cos((n2)x)
sin(nx)=2cos(x)sin((n1)x)sin((n2)x)

These are all direct consequences of the sum/difference formulae

Half angle

cos(x2)=±1+cos(x)2
sin(x2)=±1cos(x)2
tan(x2)=1cos(x)sin(x)=sin(x)1+cos(x)=±1cos(x)1+cos(x)
cos2(3x2)=2cos3(x)3cos(x)+12

In cases with ± , the sign of the result must be determined from the value of x2 . These derive from the cos(2x) formulae.

Power Reduction

sin2(x)=1cos(2x)2
cos2(x)=1+cos(2x)2
tan2(x)=1cos(2x)1+cos(2x)

Even/Odd

sin(x)=sin(x)
cos(x)=cos(x)
tan(x)=tan(x)
csc(x)=csc(x)
sec(x)=sec(x)
cot(x)=cot(x)

Calculus

ddx[sin(x)]=cos(x)
ddx[cos(x)]=sin(x)
ddx[tan(x)]=sec2(x)
ddx[sec(x)]=sec(x)tan(x)
ddx[csc(x)]=csc(x)cot(x)
ddx[cot(x)]=csc2(x)

Template:Trigonometry:Navigation

Template:BookCat