Abstract Algebra/Group Theory/Homomorphism/Homomorphism Maps Identity to Identity: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Minorax
obs tag
 
(No difference)

Latest revision as of 15:13, 2 April 2021

Theorem

Let f be a homomorphism from group G to group K.

Let eG and eK be identities of G and K.

f(eG) = eK

Proof

0.   f(eG)K f maps to K
1.   [f(eG)]1 inverse in K
.
2.   f(eGeG)=f(eG)f(eG) f is a homomorphism
3.   f(eG)=f(eG)f(eG) identity eG
.
4.   [f(eG)]1f(eG)=[f(eG)]1f(eG)f(eG) 1.
.
5.   eK=eKf(eG) identity eK, definition of inverse
6.   eK=f(eG) identity eK

Template:BookCat