Engineering Handbook/Calculus/Limit: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>MarcGarver
m QuiteUnusual moved page Engineering Handbook/Mathematics Handbook/Calculus/Limit to Engineering Handbook/Calculus/Limit without leaving a redirect: Moving down a level
 
(No difference)

Latest revision as of 16:42, 23 April 2012

Definitions

To say that

limxpf(x)=L,

means that ƒ(x) can be made as close as desired to L by making x close enough, but not equal, to p.

The following definitions (known as (ε, δ)-definitions) are the generally accepted ones for the limit of a function in various contexts.

List of Limit

Limits for general functions

If limxcf(x)=L1 and limxcg(x)=L2 then:
limxc[f(x)±g(x)]=L1±L2
limxc[f(x)g(x)]=L1×L2
limxcf(x)g(x)=L1L2 if L20
limxcf(x)n=L1n if n is a positive integer
limxcf(x)1n=L11n if n is a positive integer, and if n is even, then L1>0
limxcf(x)g(x)=limxcf(x)g(x) if limxcf(x)=limxcg(x)=0 or limxc|g(x)|=+ (L'Hôpital's rule)

Limits of general functions

limh0f(x+h)f(x)h=f(x)
limh0(f(x+h)f(x))1h=exp(f(x)f(x))
limh0(f(x(1+h))f(x))1h=exp(xf(x)f(x))

Notable special limits

limx+(1+kx)mx=emk
limx+(11x)x=1e
limx+(1+kx)x=ek
limnnn!n=e
limn2n22+2+...+2n=π

Simple functions

limxca=a
limxcx=c
limxcax+b=ac+b
limxcxr=cr if r is a positive integer
limx0+1xr=+
limx01xr={,if r is odd+,if r is even

Logarithmic and exponential functions

For a>1:
limx0+logax=
limxlogax=
limxax=0
If a<1:
limxax=

Trigonometric functions

limxasinx=sina
limxacosx=cosa
limx0sinxx=1
limx01cosxx=0
limx01cosxx2=12
limxn±tan(πx+π2)=for any integer n

Near infinities

limxN/x=0 for any real N
limxx/N={,N>0does not exist,N=0,N<0
limxxN={,N>01,N=00,N<0
limxNx={,N>11,N=10,0<N<1
limxNx=limx1/Nx=0 for any N>1
limxNx={1,N>00,N=0does not exist,N<0
limxxN= for any N>0
limxlogx=
limx0+logx=

Template:Wikipedia

Template:BookCat