Engineering Handbook/Calculus/Integration/rational functions: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>PokestarFan
m top: clean up using AWB
 
(No difference)

Latest revision as of 04:02, 3 August 2017

(ax+b)ndx=(ax+b)n+1a(n+1)+C(for n1) (Cavalieri's quadrature formula)
cax+bdx=caln|ax+b|+C
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1+C(for n∉{1,2})
xax+bdx=xaba2ln|ax+b|+C
x(ax+b)2dx=ba2(ax+b)+1a2ln|ax+b|+C
x(ax+b)ndx=a(1n)xba2(n1)(n2)(ax+b)n1+C(for n∉{1,2})
f(x)f(x)dx=ln|f(x)|+C
x2ax+bdx=b2ln(|ax+b|)a3+ax22bx2a2+C
x2(ax+b)2dx=1a3(ax2bln|ax+b|b2ax+b)+C
x2(ax+b)3dx=1a3(ln|ax+b|+2bax+bb22(ax+b)2)+C
x2(ax+b)ndx=1a3((ax+b)3n(n3)+2b(ax+b)2n(n2)b2(ax+b)1n(n1))+C(for n∉{1,2,3})
1x(ax+b)dx=1bln|ax+bx|+C
1x2(ax+b)dx=1bx+ab2ln|ax+bx|+C
1x2(ax+b)2dx=a(1b2(ax+b)+1ab2x2b3ln|ax+bx|)+C
1x2+a2dx=1aarctanxa+C
1x2a2dx={1aarctanhxa=12alnaxa+x+C(for |x|<|a|)1aarccothxa=12alnxax+a+C(for |x|>|a|)

For a0:

1ax2+bx+cdx={24acb2arctan2ax+b4acb2+C(for 4acb2>0)2b24acarctanh2ax+bb24ac+C=1b24acln|2ax+bb24ac2ax+b+b24ac|+C(for 4acb2<0)22ax+b+C(for 4acb2=0)
xax2+bx+cdx=12aln|ax2+bx+c|b2adxax2+bx+c+C
mx+nax2+bx+cdx={m2aln|ax2+bx+c|+2anbma4acb2arctan2ax+b4acb2+C(for 4acb2>0)m2aln|ax2+bx+c|2anbmab24acarctanh2ax+bb24ac+C(for 4acb2<0)m2aln|ax2+bx+c|2anbma(2ax+b)+C(for 4acb2=0)
1(ax2+bx+c)ndx=2ax+b(n1)(4acb2)(ax2+bx+c)n1+(2n3)2a(n1)(4acb2)1(ax2+bx+c)n1dx+C
x(ax2+bx+c)ndx=bx+2c(n1)(4acb2)(ax2+bx+c)n1b(2n3)(n1)(4acb2)1(ax2+bx+c)n1dx+C
1x(ax2+bx+c)dx=12cln|x2ax2+bx+c|b2c1ax2+bx+cdx+C
dxx2n+1=k=12n1{12n1[sin((2k1)π2n)arctan[(xcos((2k1)π2n))csc((2k1)π2n)]]12n[cos((2k1)π2n)ln|x22xcos((2k1)π2n)+1|]}+C

Any rational function can be integrated using the above equations and partial fractions in integration, by decomposing the rational function into a sum of functions of the form:

a(xb)n, and ax+b((xc)2+d2)n.

Template:BookCat