Calculus/Tables of Derivatives: Difference between revisions

From testwiki
Jump to navigation Jump to search
Hyperbolic and Inverse Hyperbolic Functions: Just a simple rearrangement in the order of the derivatives of the inverse hyperbolic functions to match the logic found in the order of the derivatives of hyperbolic functions.
 
(No difference)

Latest revision as of 15:16, 19 March 2024

Template:Calculus/Top Nav Template:Wikipedia

General Rules

ddx(f+g)=dfdx+dgdx

ddx(cf)=cdfdx

ddx(fg)=fdgdx+gdfdx

ddx(fg)=fdgdx+gdfdxg2

ddx[f(g(x))]=dfdgdgdx=f(g(x))g(x)

dndxnf(x)g(x)=i=0n(ni)f(ni)(x)g(i)(x)

ddx(1f)=ff2

Powers and Polynomials

  • ddx(c)=0
  • ddxx=1
  • ddxxn=nxn1
  • ddxx=12x
  • ddx1x=1x2
  • ddx(cnxn+cn1xn1+cn2xn2++c2x2+c1x+c0)=ncnxn1+(n1)cn1xn2+(n2)cn2xn3++2c2x+c1

Trigonometric Functions

ddxsin(x)=cos(x)

ddxcos(x)=sin(x)

ddxtan(x)=sec2(x)

ddxcot(x)=csc2(x)

ddxsec(x)=sec(x)tan(x)

ddxcsc(x)=csc(x)cot(x)

Exponential and Logarithmic Functions

  • ddxex=ex
  • ddxax=axln(a)if a>0
  • ddxln(x)=1x
  • ddxloga(x)=1xln(a)if a>0 , a1
  • ddx(fg)=ddx(egln(f))=fg(fgf+gln(f)) ,f>0
  • ddx(cf)=ddx(efln(c))=cfln(c)f

Inverse Trigonometric Functions

ddxarcsin(x)=11x2

ddxarccos(x)=11x2

ddxarctan(x)=1x2+1

ddxarccot(x)=1x2+1

ddxarcsec(x)=1|x|x21

ddxarccsc(x)=1|x|x21

Hyperbolic and Inverse Hyperbolic Functions

ddxsinh(x)=cosh(x)

ddxcosh(x)=sinh(x)

ddxtanh(x)=sech2(x)

ddxsech(x)=tanh(x)sech(x)

ddxcoth(x)=csch2(x)

ddxcsch(x)=coth(x)csch(x)

ddxarsinh(x)=1x2+1

ddxarcosh(x)=1x21 , x>1

ddxartanh(x)=11x2 , |x|<1

ddxarsech(x)=1x1x2 , 0<x<1

ddxarcoth(x)=11x2 , |x|>1

ddxarcsch(x)=1|x|1+x2 , x0


Template:Calculus/TOC