LMIs in Control/pages/systemzeros through feedthrough: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Fatima107
Created page with "Let's say we have a transfer function defined as a ratio of two polynomials: <math> \begin{align} H(s) = \frac{N(s)}{D(s)} \\ \end{align}</math> Zeros are the roots of N(s) (..."
 
(No difference)

Latest revision as of 21:35, 7 December 2019

Let's say we have a transfer function defined as a ratio of two polynomials: H(s)=N(s)D(s) Zeros are the roots of N(s) (the numerator of the transfer function) obtained by setting N(s)=0 and solving for s.The values of the poles and the zeros of a system determine whether the system is stable, and how well the system performs. Similarly, the system zeros are either real or appear in complex conjugate pairs. In the case of system zeros without feedthrough, we take the assumption that D=0.


The System

Consider a continuous-time LTI system, G , with minimal statespace representation (A,B,C,0)

x˙(t)=Ax(t)+Bu(t)y(t)=Cx(t)

The Data

The matrices:

An×nMn×qNq×n

The LMI: System Zeros without feedthrough

The transmission zeros of G(s)=C(sIA)1B are the eigenvalues of NAM, where Nq×n,Mn×q,CM=0,NB=0,NM=1.. Therefore , G(s) is a minimum phase if and only if there exists P𝕊q, where P>0 such that

PNAM+MTATNTP<0

Conclusion:

If P exists, it ensures non-minimum phase. Eigenvalues of NAM then gives the zeros of the system.

Implementation

https://github.com/Ricky-10/coding107/blob/master/Systemzeroswithoutfeedthrough

A list of references documenting and validating the LMI.

Return to Main Page:

Template:BookCat