Solutions To Mathematics Textbooks/Basic Mathematics/Chapter 13: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Hireth
Added more exercises.
 
(No difference)

Latest revision as of 16:48, 11 November 2020

Chapter 13

Section 1

1

f(x)=1x

f(34)= 134= 1*(34)1=43

f(23)= 123= 1*(23)1= 32


2

f(x)=1x22 (x±2)

f(5)=1522=1252=123


3

f(x)=x3 is defined for all real numbers.

f(27)=273=3 because 33=27.


4

a)f(1)=1

b)f(3)=3

c)f(43)=43


5

a)f(12)=1/2+|1/2|=1

b)f(2)=2+|2|=4

c)f(4)=4+|4|=4+4=0

d)f(5)=5+|5|=5+5=0


6

f(x)=2x+x25


a)f(1)=2(1)+(1)25=2

b)f(1)=2(1)+(1)25=6


7

f(x)=x4

x0

f(16)=2, because 24=16


8

f(x)=f(x) is said to be an even function for all numbers x.

f(x)=f(x) is said to be an odd function for all x.


a)f(x)=x is odd.


b)f(x)=x2 is even.


c)f(x)=x3 is odd.


d)f(x)=1x if x0 and f(0)=0 is odd.


9

Let fe(x)=f(x)+f(x)2 and fo(x)=f(x)f(x)2 be the even and odd functions respectively.

Then fe(x)+fo(x)=f(x)+f(x)+f(x)f(x)2=fe(x)


10

a) Odd

b) Even

c) Odd

d) Odd

e) Even

f) Even

g) Even


11

a) fa(x)=f(x)f(x)2 fb(x)=f(x)f(x)2

fa(x)+fb(x)=f(x)f(x)+f(x)f(x)2

It follows that fa(x)+fb(x)=f(x)f(x) (The odd function)


b) fa(x)=f(x)+f(x)2 fb(x)=f(x)+f(x)2

fa(x)+fb(x)=f(x)+f(x)+f(x)+f(x)2

It follows that fa(x)+fb(x)=f(x)+f(x) (The even function)

Template:BookCat