Quantum Chemistry/Example 1: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Cnrowley
m reformatted inquestion
 
(No difference)

Latest revision as of 19:30, 25 August 2023

Find ⟨x⟩, ⟨x2⟩, ⟨px⟩ and ⟨px2⟩ for a quantum harmonic oscillator in the ground state, then determine the uncertainty on the position and momentum. Is the product of the uncertainty on position and momentum consistent with the Heisenberg's Uncertainty Principle?

Heisenberg's Uncertainty Principle

δxδp2where =h2π

The wavefunction of a quantum harmonic oscillator in the ground state is:

Ψ0(x)=(απ)14eαx22 Using this wavefunction the average position and the average of the square of the position can be calculated.Template:BookCat


The average position:

x=Ψ0(x)*xΨ0(x) dx

 =(απ)14eαx22x(απ)14eαx22 dx

 =(απ)12xe2αx22 dx

 =(απ)12xeαx2 dx

use xeαx2 dx=12αeαx2+C

 =(απ)12[12αeαx2]

 =(απ)12[12α(0)12α(0)]

x=0



The average square of the position:

x2=Ψ0(x)*x2Ψ0(x) dx

=(απ)14eαx22x2(απ)14eαx22 dx

=(απ)12x2e2αx22 dx

=(απ)12x2eαx2 dx

use x2eαx2 dx=πerf(αx)4α32  xeαx22α+C

=(απ)12[πerf(αx)4α32  xeαx22α]

=(απ)12[π4erf(α )α32  limxxeαx22α]  [π4erf(α)α32  limxxeαx22α]

use limxerf(x)=1 and limxerf(x)=1

=(απ)12 π4 1α32 [1(1)]

=απ π4 1α32 [2]

x2=12α



The uncertainty on the position:

δx=x2x2

    =12α0

δx=12α


The average momentum:

px=Ψ0(x)*p^xΨ0(x) dxwhere p^x=i(x)

=(απ)14eαx22i(x)(απ)14eαx22 dx

=(απ)12ieαx22(x) eαx22 dx

=(απ)12ieαx22(αx eαx22) dx

=α(απ)12ieαx22x eαx22 dx

=α(απ)12ix eαx2 dx

use xeαx2 dx=12αeαx2+C

=α32πi [12α e2αx2]

=α32πi[12α(0)12α(0)]

px=0


The average square of the momentum:

px2=Ψ0(x)*p^x2Ψ0(x) dx

=(απ)14eαx22(ix)(ix)(απ)14eαx22 dx

=(απ)12i22eαx22(x)(x) eαx22 dx

=(απ)12(1)2eαx22(x) (αxeαx22) dx

=α(απ)122eαx22(eαx22+αx2e2αx22) dx

=α32π 2eαx2 dxeαx22 αx2e2αx22 dx

use eαx2 dx=πα

=α32π 2(πα+αx2eαx2 dx)

use x2eαx2 dx=πerf(αx)4α32  xeαx22α+C

=α32π 2(πα+α[π erf(α x)4α32 xeαx22α])

=α32π 2(πα+α[π4α32 erf(α)limx xeαx22α]  [π4α32 erf(α)limx xeαx22α])

use limxerf(x)=1 and limxerf(x)=1

=α32π 2(πα+α[π4α32 (1) (0)]  [π4α32 (1) (0)])

=α32π 2[πα+α(2π4α32 )]

=απ 2[π+12π]

px2=12α2



The uncertainty on the momentum:

δpx=px2px2

  =a2202

δpx=a22 


The product of the uncertainty on the position and the uncertainty on the momentum is:

δxδpx=12αα2 

 =12 


This is equal to 2, therefore, a quantum harmonic oscillator in the ground state is consistent with the Heisenberg Uncertainty Principle.