Algebra/Chapter 11/Composite Functions: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>MathXplore
m Added {{BookCat}} using BookCat.js
 
(No difference)

Latest revision as of 02:54, 29 December 2024

Composite function

A composite function h can be defined as the composite of the two functions f and g and denoted as h(x)=f(g(x)) (read h of x is equal to f of g of x) or h(x)=(fg)(x).

Example:

Let f(x)=2x+1     g(x)=5x3
 h(x)=f(g(x))
 h(x)=f(5x3)
 h(x)=2(5x3)+1
 h(x)=10x6+1h(x)=10x5

Example:

Let f(x)=16x     g(x)=4x2
(fg)(x)=f(4x2)
(fg)(x)=16(4x2)
(fg)(x)=4(4x2)
(fg)(x)=4(4x2)
(fg)(x)=24x2
Domain: 2x2
Range: 4y0

Template:BookCat