Introduction to Mathematical Physics/Statistical physics/Canonical distribution in classical mechanics
Consider a system for which only the energy is fixed. Probability for this system to be in a quantum state of energy is given (see previous section) by:
Consider a classical description of this same system. For instance, consider a system constituted by particles whose position and momentum are noted and , described by the classical hamiltonian . A classical probability density is defined by:
Template:IMP/label Template:IMP/eq
Quantity represents the probability for the system to be in the phase space volume between hyperplanes and . Normalization coefficients and are proportional.
One can show Template:IMP/cite that
being a sort of quantum state volume.
Template:IMP/rem Partition function provided by a classical approach becomes thus:
But this passage technique from quantum description to classical description creates some compatibility problems. For instance, in quantum mechanics, there exist a postulate allowing to treat the case of a set of identical particles. Direct application of formula of equation eqdensiprobaclas leads to wrong results (Gibbs paradox). In a classical treatment of set of identical particles, a postulate has to be artificially added to the other statistical mechanics postulates:
This leads to the classical partition function for a system of identical particles: Template:IMP/eq