R Programming/Probability Distributions

From testwiki
Revision as of 21:20, 13 July 2020 by 207.62.145.189 (talk) (Multinomial: Corrected missing character.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:R Programming/Navigation

This page review the main probability distributions and describe the main R functions to deal with them.

R has lots of probability functions.

  • r is the generic prefix for random variable generator such as runif(), rnorm().
  • d is the generic prefix for the probability density function such as dunif(), dnorm().
  • p is the generic prefix for the cumulative density function such as punif(), pnorm().
  • q is the generic prefix for the quantile function such as qunif(), qnorm().

Discrete distributions

Benford Distribution

The Template:W is the distribution of the first digit of a number. It is due to Benford 1938[1] and Newcomb 1881[2].

> library(VGAM)
> dbenf(c(1:9))
[1] 0.30103000 0.17609126 0.12493874 0.09691001 0.07918125 0.06694679 0.05799195 0.05115252 0.04575749

Bernoulli

We can draw from a Template:W using sample(), runif() or rbinom() with size = 1.

> n <- 1000
> x <- sample(c(0,1), n, replace=T)
> x <- sample(c(0,1), n, replace=T, prob=c(0.3,0.7))
> x <- runif(n) > 0.3
> x <- rbinom(n, size=1, prob=0.2)

Binomial

We can sample from a Template:W using the rbinom() function with arguments n for number of samples to take, size defining the number of trials and prob defining the probability of success in each trial.

> x <- rbinom(n=100,size=10,prob=0.5)

Hypergeometric distribution

We can sample n times from a Template:W using the rhyper() function.

> x <- rhyper(n=1000, 15, 5, 5)

Geometric distribution

The Template:W.

> N <- 10000
> x <- rgeom(N, .5)
> x <- rgeom(N, .01)

Multinomial

The Template:W.

> sample(1:6, 100, replace=T, prob= rep(1/6,6))

Negative binomial distribution

The Template:W is the distribution of the number of failures before k successes in a series of Bernoulli events.

> N <- 100000
> x <- rnbinom(N, 10, .25)

Poisson distribution

We can draw n values from a Template:W with a mean set by the argument lambda.

> x <- rpois(n=100, lambda=3)

Zipf's law

The distribution of the frequency of words is known as Template:W. It is also a good description of the distribution of city size[3]. dzipf() and pzipf() (VGAM)

> library(VGAM)
> dzipf(x=2, N=1000, s=2)

Continuous distributions

Beta and Dirichlet distributions

>library(gtools)
>?rdirichlet
>library(bayesm)
>?rdirichlet
>library(MCMCpack)
>?Dirichlet

Cauchy

We can sample n values from a Template:W with a given location parameter x0 (default is 0) and scale parameter γ (default is 1) using the rcauchy() function.

> x <- rcauchy(n=100, location=0, scale=1)

Chi Square distribution

Quantile of the Template:W (χ2 distribution)

> qchisq(.95,1)
[1] 3.841459
> qchisq(.95,10)
[1] 18.30704
> qchisq(.95,100)
[1] 124.3421

Exponential

We can sample n values from a Template:W with a given rate (default is 1) using the rexp() function

> x <- rexp(n=100, rate=1)

Fisher-Snedecor

We can draw the density of a Template:W (F-distribution) :

> par(mar=c(3,3,1,1))
> x <- seq(0,5,len=1000)
> plot(range(x),c(0,2),type="n")
> grid()
> lines(x,df(x,df1=1,df2=1),col="black",lwd=3)
> lines(x,df(x,df1=2,df2=1),col="blue",lwd=3)
> lines(x,df(x,df1=5,df2=2),col="green",lwd=3)
> lines(x,df(x,df1=100,df2=1),col="red",lwd=3)
> lines(x,df(x,df1=100,df2=100),col="grey",lwd=3)
> legend(2,1.5,legend=c("n1=1, n2=1","n1=2, n2=1","n1=5, n2=2","n1=100, n2=1","n1=100, n2=100"),col=c("black","blue","green","red","grey"),lwd=3,bty="n")

Gamma

We can sample n values from a Template:W with a given shape parameter and scale parameter θ using the rgamma() function. Alternatively a shape parameter and rate parameter β=1/θ can be given.

> x <- rgamma(n=10, scale=1, shape=0.4)
> x <- rgamma(n=100, scale=1, rate=0.8)

Levy

We can sample n values from a Template:W with a given location parameter μ (defined by the argument m, default is 0) and scaling parameter (given by the argument s, default is 1) using the rlevy() function.

> x <- rlevy(n=100, m=0, s=1)

Log-normal distribution

We can sample n values from a Template:W with a given meanlog (default is 0) and sdlog (default is 1) using the rlnorm() function

> x <- rlnorm(n=100, meanlog=0, sdlog=1)

We can sample n values from a Template:W or gaussian Distribution with a given mean (default is 0) and sd (default is 1) using the rnorm() function

> x <- rnorm(n=100, mean=0, sd=1)

Quantile of the normal distribution

> qnorm(.95)
[1] 1.644854
> qnorm(.975)
[1] 1.959964
> qnorm(.99)
[1] 2.326348
  • The mvtnorm package includes functions for multivariate normal distributions.
    • rmvnorm() generates a multivariate normal distribution.
> library(mvtnorm)
> sig <- matrix(c(1, 0.8, 0.8, 1), 2, 2)
> r <- rmvnorm(1000, sigma = sig)
> cor(r) 
          [,1]      [,2]
[1,] 1.0000000 0.8172368
[2,] 0.8172368 1.0000000

Pareto Distributions

  • Template:W dgpd() in evd
  • dpareto(), ppareto(), rpareto(), qpareto() in actuar
  • The VGAM package also has functions for the Pareto distribution.

Student's t distribution

Quantile of the Template:W

> qt(.975,30)
[1] 2.042272
> qt(.975,100)
[1] 1.983972
> qt(.975,1000)
[1] 1.962339

The following lines plot the .975th quantile of the t distribution in function of the degrees of freedom :

curve(qt(.975,x), from = 2 , to = 100, ylab = "Quantile 0.975 ", xlab = "Degrees of freedom", main = "Student t distribution")
abline(h=qnorm(.975), col = 2)

Uniform distribution

We can sample n values from a Template:W (also known as a rectangular distribution] between two values (defaults are 0 and 1) using the runif() function

> runif(n=100, min=0, max=1)

Weibull

We can sample n values from a Template:W with a given shape and scale parameter μ (default is 1) using the rweibull() function.

> x <- rweibull(n=100, shape=0.5, scale=1)

plogis, qlogis, dlogis, rlogis

  • Frechet dfrechet() evd
  • Generalized Extreme Value dgev() evd
  • Gumbel dgumbel() evd
  • Burr, dburr, pburr, qburr, rburr in actuar

Distribution in circular statistics

  • Functions for circular statistics are included in the CircStats package.
    • dvm() Template:W (also known as the nircular normal or Tikhonov distribution) density function
    • dtri() Template:W function
    • dmixedvm() Mixed Von Mises density
    • dwrpcauchy() wrapped Cauchy density
    • dwrpnorm() wrapped normal density.

See also

  • Packages VGAM, SuppDists, actuar, fBasics, bayesm, MCMCpack

References

Template:Reflist

Template:R Programming/Navbar

pt:R (linguagem de programação)/Distribuições de probabilidade

  1. Benford, F. (1938) The Law of Anomalous Numbers. Proceedings of the American Philosophical Society, 78, 551–572.
  2. Newcomb, S. (1881) Note on the Frequency of Use of the Different Digits in Natural Numbers. American Journal of Mathematics, 4, 39–40.
  3. Gabaix, Xavier (August 1999). "Zipf's Law for Cities: An Explanation". Quarterly Journal of Economics 114 (3): 739–67. doi:10.1162/003355399556133. ISSN 0033-5533. http://pages.stern.nyu.edu/~xgabaix/papers/zipf.pdf.