//create a dodecahedron by intersecting 6 boxes
module dodecahedron(height)
{
scale([height,height,height]) //scale by height parameter
{
intersection(){
//make a cube
cube([2,2,1], center = true);
intersection_for(i=[0:4]) //loop i from 0 to 4, and intersect results
{
//make a cube, rotate it 116.565 degrees around the X axis,
//then 72*i around the Z axis
rotate([0,0,72*i])
rotate([116.565,0,0])
cube([2,2,1], center = true);
}
}
}
}
//create 3 stacked dodecahedra
//call the module with a height of 1 and move up 2
translate([0,0,2])dodecahedron(1);
//call the module with a height of 2
dodecahedron(2);
//call the module with a height of 4 and move down 4
translate([0,0,-4])dodecahedron(4);
The icosahedron and its internal structure as rendered from the example.
This icosahedron renders in an edge-up orientation. Rotating this icosahedron by about the Y-axis results in a vertex-up orientation. Rotating by about the X-axis results in a face-up orientation. The edge length is related to the inner diameter (distance between opposite faces) by .
// Code via reddit with triangle winding fixes, cannot add link due to
// wikibooks considering it spam.
// 4 is the realistic max.
// Don't do 5 or more, takes forever.
// set recursion to the desired level. 0=20 tris, 1=80 tris, 2=320 tris
module icosphere(radius=10, recursion=2, icoPnts, icoTris) {
//t = (1 + sqrt(5))/2;
//comment from monfera to get verts to unit sphere
t = sqrt((5+sqrt(5))/10);
s = sqrt((5-sqrt(5))/10);
init = (icoPnts||icoTris) ? false : true; //initial call if icoPnts is empty
// 1 --> draw icosphere from base mesh
// 2 --> loop through base mesh and subdivide by 4 --> 20 steps
// 3 --> loop through subdivided mesh and subdivide again (or subdivide by 16) --> 80 steps
// 4 ...
verts = [
[-s, t, 0], //0
[ s, t, 0],
[-s,-t, 0],
[ s,-t, 0],
[ 0,-s, t],
[ 0, s, t],
[ 0,-s,-t],
[ 0, s,-t],
[ t, 0,-s],
[ t, 0, s],
[-t, 0,-s],
[-t, 0, s]]; //11
//base mesh with 20 faces
tris = [
//5 faces around point 0
[ 0, 5, 11], //0
[ 0, 1, 5],
[ 0, 7, 1],
[ 0, 10, 7],
[ 0, 11, 10],
// 5 adjacent faces
[ 1, 9, 5], //5
[ 5, 4, 11],
[11, 2, 10],
[10, 6, 7],
[ 7, 8, 1],
//5 faces around point 3
[ 3, 4, 9], //10
[ 3, 2, 4],
[ 3, 6, 2],
[ 3, 8, 6],
[ 3, 9, 8],
//5 adjacent faces
[ 4, 5, 9], //15
[ 2, 11, 4],
[ 6, 10, 2],
[ 8, 7, 6],
[ 9, 1, 8]]; //19
if (recursion) {
verts = (init) ? verts : icoPnts;
tris = (init) ? tris : icoTris;
newSegments = recurseTris(verts,tris);
newVerts = newSegments[0];
newTris = newSegments[1];
icosphere(radius,recursion-1,newVerts,newTris);
} else if (init) { //draw the base icosphere if no recursion and initial call
scale(radius) polyhedron(verts, tris);
} else { // if not initial call some recursion has to be happened
scale(radius) polyhedron(icoPnts, icoTris);
}
}
// Adds verts if not already there,
// takes array of vertices and indices of a tri to expand
// returns expanded array of verts and indices of new polygon with 4 faces
// [[verts],[0,(a),(c)],[1,(b),(a)],[2,(c),(b)],[(a),(b),(c)]]
function addTris(verts, tri) = let(
a= getMiddlePoint(verts[tri[0]], verts[tri[1]]), //will produce doubles
b= getMiddlePoint(verts[tri[1]], verts[tri[2]]), //these are unique
c= getMiddlePoint(verts[tri[2]], verts[tri[0]]), //these are unique
aIdx = search(verts, a), //point a already exists
l=len(verts)
) len(aIdx) ? [concat(verts,[a,b,c]),[[tri[0],l,l+2], //1
[tri[1],l+1,l], //2
[tri[2],l+2,l+1], //3
[l,l+1,l+2]] ] : //4
[concat(verts,[b,c]), [[tri[0],aIdx,l+1], //1
[tri[1],l,aIdx], //2
[tri[2],l+1,l], //3
[aIdx,l,l+1]] ]; //4
// Recursive function that does one recursion on the whole icosphere (auto recursion steps derived from len(tris)).
function recurseTris(verts, tris, newTris=[], steps=0, step=0) = let(
stepsCnt = steps ? steps : len(tris)-1, //if initial call initialize steps
newSegment=addTris(verts=verts,tri=tris[step]),
newVerts=newSegment[0], //all old and new Vertices
newerTris=concat(newTris,newSegment[1]) //only new Tris
) (stepsCnt==(step)) ? [newVerts,newerTris] :
recurseTris(newVerts,tris,newerTris,stepsCnt,step+1);
// Get point between two verts on unit sphere.
function getMiddlePoint(p1, p2) = fixPosition((p1+p2)/2);
// Fix position to be on unit sphere
function fixPosition(p) = let(l=norm(p)) [p.x/l,p.y/l,p.z/l];
Half-pyramid
An upside-down half-pyramid is a useful shape for 3D printing a support for an overhang protruding from a vertical wall. With sloping sides no steeper than 45°, no removable support structure needs to be printed.
While a half-pyramid can be made with a 4-sided cone (using the cylinder primitive) and subtracting a cube from half of it, the shape can be easily made in one operation by a scaled linear extrude of a rectangle having the middle of one edge on the origin.
// Create a half-pyramid from a single linear extrusion
module halfpyramid(base, height) {
linear_extrude(height, scale=0.01)
translate([-base/2, 0, 0]) square([base, base/2]);
}
halfpyramid(20, 10);
Linear Extrude with Scale as an interpolated function
//Linear Extrude with Scale as an interpolated function
// This module does not need to be modified,
// - unless default parameters want to be changed
// - or additional parameters want to be forwarded (e.g. slices,...)
module linear_extrude_fs(height=1,isteps=20,twist=0){
//union of piecewise generated extrudes
union(){
for(i = [ 0: 1: isteps-1]){
//each new piece needs to be adjusted for height
translate([0,0,i*height/isteps])
linear_extrude(
height=height/isteps,
twist=twist/isteps,
scale=f_lefs((i+1)/isteps)/f_lefs(i/isteps)
)
// if a twist constant is defined it is split into pieces
rotate([0,0,-(i/isteps)*twist])
// each new piece starts where the last ended
scale(f_lefs(i/isteps))
obj2D_lefs();
}
}
}
// This function defines the scale function
// - Function name must not be modified
// - Modify the contents/return value to define the function
function f_lefs(x) =
let(span=150,start=20,normpos=45)
sin(x*span+start)/sin(normpos);
// This module defines the base 2D object to be extruded
// - Function name must not be modified
// - Modify the contents to define the base 2D object
module obj2D_lefs(){
translate([-4,-3])
square([9,12]);
}
//Top rendered object demonstrating the interpolation steps
translate([0,0,25])
linear_extrude_fs(height=20,isteps=4);
linear_extrude_fs(height=20);
//Bottom rendered object demonstrating the inclusion of a twist
translate([0,0,-25])
linear_extrude_fs(height=20,twist=90,isteps=30);
Example Linear Extrude of a rectangle with scale following part of a sine curve function
Linear Extrude with Twist as an interpolated function
//Linear Extrude with Twist as an interpolated function
// This module does not need to be modified,
// - unless default parameters want to be changed
// - or additional parameters want to be forwarded (e.g. slices,...)
module linear_extrude_ft(height=1,isteps=20,scale=1){
//union of piecewise generated extrudes
union(){
for(i = [ 0: 1: isteps-1]){
//each new piece needs to be adjusted for height
translate([0,0,i*height/isteps])
linear_extrude(
height=height/isteps,
twist=f_left((i+1)/isteps)-f_left((i)/isteps),
scale=(1-(1-scale)*(i+1)/isteps)/(1-(1-scale)*i/isteps)
)
//Rotate to next start point
rotate([0,0,-f_left(i/isteps)])
//Scale to end of last piece size
scale(1-(1-scale)*(i/isteps))
obj2D_left();
}
}
}
// This function defines the twist function
// - Function name must not be modified
// - Modify the contents/return value to define the function
function f_left(x) =
let(twist=90,span=180,start=0)
twist*sin(x*span+start);
// This module defines the base 2D object to be extruded
// - Function name must not be modified
// - Modify the contents to define the base 2D object
module obj2D_left(){
translate([-4,-3])
square([12,9]);
}
//Left rendered object demonstrating the interpolation steps
translate([-20,0])
linear_extrude_ft(height=30,isteps=5);
linear_extrude_ft(height=30);
//Right rendered object demonstrating the scale inclusion
translate([25,0])
linear_extrude_ft(height=30,scale=3);
Example Linear Extrude of a rectangle with twist following part of a sine curve function
Linear Extrude with Twist and Scale as interpolated functions
//Linear Extrude with Twist and Scale as interpolated functions
// This module does not need to be modified,
// - unless default parameters want to be changed
// - or additional parameters want to be forwarded
module linear_extrude_ftfs(height=1,isteps=20,slices=0){
//union of piecewise generated extrudes
union(){
for(i=[0:1:isteps-1]){
translate([0,0,i*height/isteps])
linear_extrude(
height=height/isteps,
twist=leftfs_ftw((i+1)/isteps)-leftfs_ftw(i/isteps),
scale=leftfs_fsc((i+1)/isteps)/leftfs_fsc(i/isteps),
slices=slices
)
rotate([0,0,-leftfs_ftw(i/isteps)])
scale(leftfs_fsc(i/isteps))
obj2D_leftfs();
}
}
}
// This function defines the scale function
// - Function name must not be modified
// - Modify the contents/return value to define the function
function leftfs_fsc(x)=
let(scale=3,span=140,start=20)
scale*sin(x*span+start);
// This function defines the twist function
// - Function name must not be modified
// - Modify the contents/return value to define the function
function leftfs_ftw(x)=
let(twist=30,span=360,start=0)
twist*sin(x*span+start);
// This module defines the base 2D object to be extruded
// - Function name must not be modified
// - Modify the contents to define the base 2D object
module obj2D_leftfs(){
square([12,9]);
}
Example Linear Extrude of a rectangle with twist and scale following part of a sine curve function
Rocket
A rocket using rotate_extrude()
// increase the visual detail$fn=100;// the main body :// a cylinderrocket_d=30;// 3 cm widerocket_r=rocket_d/2;rocket_h=100;// 10 cm tallcylinder(d=rocket_d,h=rocket_h);// the head :// a conehead_d=40;// 4 cm widehead_r=head_d/2;head_h=40;// 4 cm tall// prepare a triangletri_base=head_r;tri_height=head_h;tri_points=[[0,0],[tri_base,0],[0,tri_height]];// rotation around X-axis and then 360° around Z-axis// put it on top of the rocket's bodytranslate([0,0,rocket_h])rotate_extrude(angle=360)polygon(tri_points);// the wings :// 3x triangleswing_w=2;// 2 mm thickmany=3;// 3x wingswing_l=40;// lengthwing_h=40;// heightwing_points=[[0,0],[wing_l,0],[0,wing_h]];modulewing(){// let it a bit inside the main bodyin_by=1;// 1 mm// set it up on the rocket's perimetertranslate([rocket_r-in_by,0,0])// set it upright by rotating around X-axisrotate([90,0,0])// set some width and center itlinear_extrude(height=wing_w,center=true)// make a trianglepolygon(wing_points);}for(i=[0:many-1])rotate([0,0,370/many*i])wing();
Horns
Horns, by translation and twisting.
// The idea is to twist a translated circle:// -/* linear_extrude(height = 10, twist = 360, scale = 0) translate([1,0]) circle(r = 1);*/modulehorn(height=10,radius=6,twist=720,$fn=50){// A centered circle translated by 1xR and // twisted by 360° degrees, covers a 2x(2xR) space.// -radius=radius/4;// De-translate.// -translate([-radius,0])// The actual code.// -linear_extrude(height=height,twist=twist,scale=0,$fn=$fn)translate([radius,0])circle(r=radius);}translate([3,0])mirror()horn();translate([-3,0])horn();
Strandbeest
See the Strandbeest example [[../Example/Strandbeest|here]].