Trigonometry/More About Addition Formulas

From testwiki
Revision as of 15:21, 20 April 2016 by imported>יהודה שמחה ולדמן
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
sin(ab)=sin(a)cos(b)cos(a)sin(b)
sin(2a)=2sin(a)cos(a)
sin(a2)=±1cos(a)2

Tangent Formulae

tan(a+b)=tan(a)+tan(b)1tan(a)tan(b)
tan(ab)=tan(a)tan(b)1+tan(a)tan(b)
tan(2a)=2tan(a)1tan2(a)=2cot(a)cot2(a)1=2cot(a)tan(a)
tan(a2)=±1cos(a)1+cos(a)=sin(a)1+cos(a)=1cos(a)sin(a)=1±1+tan2(a)tan(a)

In the last row of expressions, if 0a90 then the trigonometric functions are all positive so the positive sign is needed before the square root.

Derivations

  • sin(a+b)=sin(a)cos(b)+cos(a)sin(b)

Using cofunctions we know that sin(a)=cos(90a) . Use the formula for cos(ab) and cofunctions we can write

sin(a+b) =cos(90(a+b))
=cos((90a)b)
=cos(90a)cos(b)+sin(90a)sin(b)
=sin(a)cos(b)+cos(a)sin(b)


  • sin(ab)=sin(a)cos(b)cos(a)sin(b)

Having derived sin(a+b) we replace b with b and use the fact that cosine is even and sine is odd.

sin(a+(b)) =sin(a)cos(b)+cos(a)sin(b)
=sin(a)cos(b)+cos(a)(sin(b))
=sin(a)cos(b)cos(a)sin(b)
cos(ab)=cos(a)cos(b)+sin(a)sin(b)
cos(2a)=cos2(a)sin2(a)=2cos2(a)1=12sin2(a)
cos(a2)=±1+cos(a)2

Derivations

  • cos(a+b)=cos(a)cos(b)sin(a)sin(b)
  • cos(ab)=cos(a)cos(b)+sin(a)sin(b)

Using cos(a+b) and the fact that cosine is even and sine is odd, we have

cos(a+(b)) =cos(a)cos(b)sin(a)sin(b)
=cos(a)cos(b)sin(a)(sin(b))
=cos(a)cos(b)+sin(a)sin(b)

Template:Trig/NAV Template:BookCat