Advanced Microeconomics/Production

From testwiki
Revision as of 00:35, 14 November 2024 by imported>Kittycataclysm (nav)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Nav

Properties of Production Sets

The production vector Y=(y1,y2,yn) where yi>0 represents an output, and yi<0 an input

  • Y is non empty
  • Y is closed (includes its boundary)
  • No free lunch - y0Y=0 (no inputs, no outputs)
  • possibility of inaction (0Y)
  • Free disposal
  • Irreversability - can't make output into inputs
  • Returns to scale:
    • Non-increasing: yY,αyYα[0,1]
    • Non-decreasing: yY,αyYα>1
    • Constant: yY,αyYα0
  • Additivity: yY and yYy+yY
  • Convexity: y,yY and a[0,1]ay+(1a)yY

Profit maximization

Example

maxp2y2p1y1s.t. [y1,y2]Yf(y1,y2)k(y1,y2,λ)=p2y2p1y1+λ[kf(y1,y2)]1=p1λf1=02=p1λf2=0λ=kf(y1,y2)=0

Single Output

y=f(Z) where Z=(z1,z2,,zn)
maxy,Zpywsubject to y=f(z) -or- maxZpf(Z)wZzi=pfiwi0

marginal revenue product

Marginal revenue product is the price of output times the marginal product of input MRP=pfi
The first order conditions for profit maximization require the marginal revenue product to equal input cost for all inputs (actually) used in production,
pfi=wizi>0

marginal rate of techical substitution

pf1=w1pf2=w2f1f2=w1w2f(z1,z2)=y¯f1dz1+f2dz2=0dz2dz1=f1f2

Properties of profit functions and supply

  • Profit functions exhibit homogeneity of degree 1 π=pf(z)wz doubling all prices doubles nominal profit
  • supply functions exhibit homogeneity of degree 0

Cost Minimization

The optimal CMP gives cost function <align>\funcd{c}{w,q}</align>

Example

minz1,z2w1z1+w2z2 s.t. f(z1,z2)q(z1,z2,λ)=w1z1+w2z2λ[f(z1,z2)q]1=w1λf1=02=w2λf2=0λ=f(z1,z2)q=0

w1w2=f1f2mp1mp2 The ratio of input prices equals the ratio of marginal products

w1f1=w2f2 The marginal cost of expansion through $z_1$ equals the marginal cost of expansion through z2

C(w1,w2,q)=w1z1*+w2z2*=w1z1*+w2z2*λ[f(z1*,z2*)q]Cw1=z1*Cw2=z2*Cq=λ- marginal cost

The solution to the CMP gives factor demands, zi*=zi(w,q) and the cost function wizi=c(w,q)

Cost Functions

  • P>ATC gives positive economic profit, short run and long run
  • In short run, fixed costs are irrelevant. Shut down if p<AVC
  • minimum efficient scale: mc=ATC=P

No economic profits in the long run, given free entry for any P>ATC firms enter, in the long run π0 until p=ATCπ=0

Template:BookCat