Fractals/trigonometric

From testwiki
Revision as of 04:54, 3 August 2017 by imported>PokestarFan (clean up using AWB)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

How to compute it

One can use Maxima CAS to find it :

(%i1) z: x+y*%i;
(%o1) %i*y+x
(%o2) %i*y+x
(%i3) realpart(sinh(z));
(%o3) sinh(x)*cos(y)
(%i8) trigrat(sinh(x));
(%o8) (%e^−x*(%e^(2*x)−1))/2
(%i11) expand(%);
(%o11) %e^x/2−%e^−x/2

sin(Z) =

Real=sin(x)((exp(y)+exp(y))/2)

Imag=cos(x)((exp(y)exp(y))/2)

cos(Z)

Real=cos(x)((exp(y)+exp(y))/2)

Imag=sin(x)((exp(y)exp(y))/2)

sinh(Z)

Real=cos(y)((exp(x)exp(x))/2)

Imag=sin(y)((exp(x)+exp(x))/2)

cosh(Z)

Real=cos(y)((exp(x)+exp(x))/2)

Imag=sin(y)((exp(x)exp(x))/2)

Images

See : commons:Category:Trigonometric maps

This image shows the Julia set of acomplex function of the form f(z)=a*sin(z), where a is a suitably chosen number in the interval (0,1).

Videos

See also

Template:BookCat