Fractals/Mathematics/sequences

From testwiki
Revision as of 16:21, 21 August 2023 by imported>Soul windsurfer (degree: Julia set DEM f(z) = z^4+c where c = -0.2390264519152330+0.4155169960065820*I.png)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Difference between sequences, orders and series

types of sequences

Integer sequences

Fraction sequences

Farey sequence

The Stern-Brocot tree is a data structure showing how the sequence is built up from 0 (= 0 / 1 ) and 1 (= 1 / 1 ), by taking successive mediants.

The Farey sequence of order n is the sequence of completely reduced vulgar fractions between 0 and 1 which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.

Each Farey sequence starts with the value 0, denoted by the fraction 01, and ends with the value 1, denoted by the fraction 11 (although some authors omit these terms).

Farey Addition = the mediant of two fractions :

 acbd=a+bc+d

Terms

  • next term = child
  • Previous terms = parents[1]

Farey tree = Farey sequence as a tree

Sorted
 F1 = {0/1,                                                                                                          1/1}
 F2 = {0/1,                                                   1/2,                                                   1/1}
 F3 = {0/1,                               1/3,                1/2,                2/3,                               1/1}
 F4 = {0/1,                     1/4,      1/3,                1/2,                2/3,      3/4,                     1/1}
 F5 = {0/1,                1/5, 1/4,      1/3,      2/5,      1/2,      3/5,      2/3,      3/4, 4/5,                1/1}
 F6 = {0/1,           1/6, 1/5, 1/4,      1/3,      2/5,      1/2,      3/5,      2/3,      3/4, 4/5, 5/6,           1/1}
 F7 = {0/1,      1/7, 1/6, 1/5, 1/4, 2/7, 1/3,      2/5, 3/7, 1/2, 4/7, 3/5,      2/3, 5/7, 3/4, 4/5, 5/6, 6/7,      1/1}
 F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1}


See also

Sequences and orders on the parameter plane

Sequences of Misiurewicz points


degree

take the Misiurewicz point for zn+c and increase n ( proposed by Owen Maresh)

The constant (parameter c) for the quadratic (n=2) , cubic ( n=3), and quartic (n=4) polynomials are:

  • (-0.7432918908524301520519705530861564778806 ,0.1312405523087976002753516038253522297699);
  • -0.0649150006787816892861875745218343125883 , 0.76821968591243610206311097043854440463 );
  • (-0.593611822136354943067129147813253628530 ,0.5405019391915187246754930586066158919613 );

Point c is a Misiurewicz point c=M23,2=0.743291890852430+0.131240552308798i

    • tip of the longest branch ( ftip )
    • The angle 8388607/25165824 or 01010101010101010101010p01 has preperiod = 23 and period = 2
    • from wake 12/25 , with
      • center c = -0.739829393511579 +0.125072144080321 i and period = 25
      • root point c = -0.738203140939397 +0.124839088573366 i


m-describe 53 30 500 -0.7432918908524301 0.1312405523087976 4
the input point was -7.4329189085243008e-01 + 1.3124055230879761e-01 i
nearby hyperbolic components to the input point:

- a period 1 cardioid
  with nucleus at 0.00000e+00 + 0.00000e+00 i
  the component has size 1.00000e+00 and is pointing west
  the atom domain has size 0.00000e+00
  the atom domain coordinates of the input point are -nan + -nan i
  the atom domain coordinates in polar form are -nan to the east
  the atom coordinates of the input point are -0.74329 + 0.13124 i
  the atom coordinates in polar form are 0.75479 to the west
  the nucleus is 7.54789e-01 to the east of the input point

- a period 2 circle
  with nucleus at -1.00000e+00 + 0.00000e+00 i
  the component has size 5.00000e-01 and is pointing west
  the atom domain has size 1.00000e+00
  the atom domain coordinates of the input point are 0.25671 + 0.13124 i
  the atom domain coordinates in polar form are 0.28831 to the east-north-east
  the atom coordinates of the input point are 0.51342 + 0.26248 i
  the atom coordinates in polar form are 0.57662 to the east-north-east
  the nucleus is 2.88311e-01 to the west-south-west of the input point
  external angles of this component are:
  .(01)
  .(10)
the point escaped with dwell 472.09881

nearby Misiurewicz points to the input point:

- 24p4
  with center at -7.43291890852430202931624325972515e-01 + 1.31240552308797604770845906581477e-01 i
  the Misiurewicz domain has size 1.07586e-03
  the Misiurewicz domain coordinate radius is 1.1395e-13
  the center is 1.21387e-16 to the west of the input point
  the multiplier has radius 1.329970173958942893e+00 and angle 0.150434052944417735 (in turns)


The angle  8388607/25165824  or  01010101010101010101010p01 has  preperiod = 23  and  period = 2.
The corresponding parameter ray lands at a Misiurewicz point of preperiod 23 and period dividing 2.
Do you want to draw the ray and to shift c to the landing point?
c = -0.743291890852430                          +0.131240552308798 i    period = 0

Myrberg-Feigenbaum point

Examples:


Sharkovsky ordering

  • It is the infinite sequence of positive integers ( natural numbers)
  • It starts from 3 and ends in 1
  • It contains infinitely many subsequences.[2]
  • the number is a period of the miget ( main pseudocardioid of the midget) that appear the first time in that order
357911(2n+1)2032527292112(2n+1)213225227229221122(2n+1)223235237239231123(2n+1)232n24232221


"The Sharkovski ordering :

  • begins with the odd numbers >= 3 in increasing order ( n is increasing from left to right ),
  • then twice these numbers,
  • then 4 times them,
  • then 8 times them,
  • etc.,
  • ending with the powers of 2 in decreasing order, ending with 2^0 = 1."[3]


(2n+1)20(2n+1)21(2n+1)222n

It is related with structure of the real slice of the Mandelbrot set ( along real exis):

BMFP
B0B1...MF...2120


Period doubling scenario

sequence of fraction in the elephant valley

In the elephant valley[4][5] ( from parameter plane ) there is a sequence of componts with period p : from 1/2 to 1/p

Note that :

  • internal ray 0/1 = 1/1
  • internal angle 1/p means that ray goes from period 1 component ( parent period = 1) to period p component ( child period = p)
  • as child period grows computations are harder
  • exponential growth[6] of 2p. One can easly create a numeric value that is too large to be represented within the available storage space ( integer overflow[7] ). For example 234 is to big for short ( 16 bit ) and long ( 32 bit) integer.

The upper principal sequence of rotational number around the main cardioid of Mandelbrot set[8]

n rotation number = 1/n parameter c
2 1/2 -0.75
3 1/3 0.64951905283833*i-0.125
4 1/4 0.5*i+0.25
5 1/5 0.32858194507446*i+0.35676274578121
6 1/6 0.21650635094611*i+0.375
7 1/7 0.14718376318856*i+0.36737513441845
8 1/8 0.10355339059327*i+0.35355339059327
9 1/9 0.075191866590218*i+0.33961017714276
10 1/10 0.056128497072448*i+0.32725424859374

See :

sequence of parabolic points on the boundary of main cardioid

t=k=1n310k

Here:

  • t = internal angle ( or rotation number) of main cardioid
  • q = number of the critical orbit (star) arms. It means that one have to do q iterations around fixed point to move one point toward fixed point along arm.
  • c is a root point between hyperbolic components of period 1 ( = main cardioid) and period q. This point is at the end ( radius = 1) of internal ray for angle t
k = log10(q) t=pq (double) t ct=2e2πite4πit4
1 3/10 0.3 +0.047745751406263+0.622474571220695 i
2 33/100 0.33 -0.106920138306109 +0.649235321397436 i
3 333/1000 0.333 -0.123186752260805 +0.649516204880454 i
4 3333/10000 0.3333 -0.124818625550005 +0.649519024348384 i
5 33333/100000 0.33333 -0.124981862061192 +0.649519052553419 i
6 333333/1000000 0.333333 -0.124998186201184 +0.649519052835480 i
7 3333333/10000000 0.3333333 -0.124999818620069 +0.649519052838300 i
8 33333333/100000000 0.33333333 -0.124999981862006 +0.649519052838329 i
9 333333333/1000000000 0.333333333 -0.124999998186201 +0.649519052838329 i
10 3333333333/10000000000 0.3333333333 -0.124999999818620 +0.649519052838329 i

sequence from Siegel disk to Leau-Fatou flower

  • plain Siegel disk
  • digitated Siegel disk[9]
  • virtual Siegel disk
  • ? Leau-Fatou flower ?

1 over 2

1 over 3

t=[0;3,10n,g]=0+13+110n+1g

n t ct=2e2πite4πit4
0 0.2763932022500210 +0.1538380639536641 + 0.5745454151066985 i
1 0.3231874668087892 -0.0703924965263780 + 0.6469145331346999 i
2 0.3322326933513446 -0.1190170769366243 + 0.6494880316361160 i
3 0.3332223278292314 -0.1243960357918422 + 0.6495187369145560 i
4 0.3333222232791965 -0.1249395463818515 + 0.6495190496732967 i
5 0.3333322222327929 -0.1249939540657307 + 0.6495190528066729 i
6 0.3333332222223279 -0.1249993954008480 + 0.6495190528380124 i
7 0.3333333222222233 -0.1249999395400276 + 0.6495190528383258 i
8 0.3333333322222222 -0.1249999939540022 + 0.6495190528383290 i
9 0.3333333332222223 -0.1249999993954002 + 0.6495190528383290 i
10 0.3333333333222222 -0.1249999999395400 + 0.6495190528383290 i
11 0.3333333333322222 -0.1249999999939540 + 0.6495190528383290 i

sequence of fractions tending to the golden mean ( Golden Ratio Conjugate )

Approximations to the reciprocal golden ratio by finite continued fractions, or ratios of Fibonacci numbers
Golden Mean Quadratic Siegel Disc
n =   1 ;  p_n/q_n =  1.0000000000000000000 =                     1 /                    1 
n =   2 ;  p_n/q_n =  0.5000000000000000000 =                     1 /                    2 
n =   3 ;  p_n/q_n =  0.6666666666666666667 =                     2 /                    3 
n =   4 ;  p_n/q_n =  0.6000000000000000000 =                     3 /                    5 
n =   5 ;  p_n/q_n =  0.6250000000000000000 =                     5 /                    8 
n =   6 ;  p_n/q_n =  0.6153846153846153846 =                     8 /                   13 
n =   7 ;  p_n/q_n =  0.6190476190476190476 =                    13 /                   21 
n =   8 ;  p_n/q_n =  0.6176470588235294118 =                    21 /                   34 
n =   9 ;  p_n/q_n =  0.6181818181818181818 =                    34 /                   55 
n =  10 ;  p_n/q_n =  0.6179775280898876404 =                    55 /                   89 
n =  11 ;  p_n/q_n =  0.6180555555555555556 =                    89 /                  144 
n =  12 ;  p_n/q_n =  0.6180257510729613734 =                   144 /                  233 
n =  13 ;  p_n/q_n =  0.6180371352785145888 =                   233 /                  377 
n =  14 ;  p_n/q_n =  0.6180327868852459016 =                   377 /                  610 
n =  15 ;  p_n/q_n =  0.6180344478216818642 =                   610 /                  987 
n =  16 ;  p_n/q_n =  0.6180338134001252348 =                   987 /                 1597 
n =  17 ;  p_n/q_n =  0.6180340557275541796 =                  1597 /                 2584 
n =  18 ;  p_n/q_n =  0.6180339631667065295 =                  2584 /                 4181 
n =  19 ;  p_n/q_n =  0.6180339985218033999 =                  4181 /                 6765 
n =  20 ;  p_n/q_n =  0.6180339850173579390 =                  6765 /                10946 
n =  21 ;  p_n/q_n =  0.6180339901755970865 =                 10946 /                17711 
n =  22 ;  p_n/q_n =  0.6180339882053250515 =                 17711 /                28657 
n =  23 ;  p_n/q_n =  0.6180339889579020014 =                 28657 /                46368 
n =  24 ;  p_n/q_n =  0.6180339886704431856 =                 46368 /                75025 
n =  25 ;  p_n/q_n =  0.6180339887802426829 =                 75025 /               121393 
n =  26 ;  p_n/q_n =  0.6180339887383030068 =                121393 /               196418 
n =  27 ;  p_n/q_n =  0.6180339887543225376 =                196418 /               317811 
n =  28 ;  p_n/q_n =  0.6180339887482036214 =                317811 /               514229 
n =  29 ;  p_n/q_n =  0.6180339887505408394 =                514229 /               832040 
n =  30 ;  p_n/q_n =  0.6180339887496481015 =                832040 /              1346269 
n =  31 ;  p_n/q_n =  0.6180339887499890970 =               1346269 /              2178309 
n =  32 ;  p_n/q_n =  0.6180339887498588484 =               2178309 /              3524578 
n =  33 ;  p_n/q_n =  0.6180339887499085989 =               3524578 /              5702887 
n =  34 ;  p_n/q_n =  0.6180339887498895959 =               5702887 /              9227465 
n =  35 ;  p_n/q_n =  0.6180339887498968544 =               9227465 /             14930352 
n =  36 ;  p_n/q_n =  0.6180339887498940819 =              14930352 /             24157817 
n =  37 ;  p_n/q_n =  0.6180339887498951409 =              24157817 /             39088169 
n =  38 ;  p_n/q_n =  0.6180339887498947364 =              39088169 /             63245986 
n =  39 ;  p_n/q_n =  0.6180339887498948909 =              63245986 /            102334155 
n =  40 ;  p_n/q_n =  0.6180339887498948319 =             102334155 /            165580141 
n =  41 ;  p_n/q_n =  0.6180339887498948544 =             165580141 /            267914296 
n =  42 ;  p_n/q_n =  0.6180339887498948458 =             267914296 /            433494437 
n =  43 ;  p_n/q_n =  0.6180339887498948491 =             433494437 /            701408733 
n =  44 ;  p_n/q_n =  0.6180339887498948479 =             701408733 /           1134903170 
n =  45 ;  p_n/q_n =  0.6180339887498948483 =            1134903170 /           1836311903 

This is a sequence of rational numbers ( Julia sets are parabolic). It's limit is an irrational number ( Julia set has a Siegel disk).

Sequence on the dynamic plane

More

References

Template:BookCat