Principles of Economics/Specialization and Gains From Trade

From testwiki
Revision as of 23:10, 29 September 2019 by imported>Musical Inquisit (Check your Understanding: Added \Delta to formula to be more accurate.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The idea of scarcity is all-encompassing in economics. For review purposes, scarcity is the idea that our unlimited desires are never satisfied because the amount of resources we have is limited. It is not surprising to hear that scarcity is involved with gains from trade – the concept that people will gain more from trading or working with other rational individuals as opposed to working by him or herself on a task he or she does not have the pleasure of understanding or doing. Let's put this into more concrete terms with an example.

Gains from Trade: An Example

Individual Talent
Quincy Adams Advertising and management
James Portley Inventing and designing products

In the table above, there are two people. Say those two people are co-founders of MetalPlastic, a company that makes and designs phones. The two situations presented below are more of a thought experiment since this is not a real-life example.

The Situation with No Trade

James Portley would like to advertise his new product that may very well change the face of the phone industry. However, since he cannot convincingly give any reason as to why you, the seller, should buy this product, he will fail to change the face of the phone industry – his desire was not met. Quincy Adams would like to advertise a new phone. Since there are no new phones in the market, Adams will have to find a new phone somewhere else; otherwise, he may not find a new phone to advertise. Since Quincy Adams cannot make a new phone and advertise the phone, he will never fulfill his desires.

The Situation with Trade

Imagine that James Portley and Quincy Adams met one day. The pair noticed their individual talents and thought to work together. The co-founder group settled for the company name MetalPlastic. The pair started working together. After Portley made his new product, Adams decided to risk the money they have to present their new product. It was a success story. Because Quincy was able to convince financial investors to invest in the phone, they were able to make a profit selling what they wanted. Each person's individual desires were met – to meet their goals.

Conclusion to Take Away

By specializing their talents, the co-founder group were able to fulfill their individual desires. Quincy made a trade with James, either intentionally or not: if James made a product, Quincy will help advertise the good. Keep in mind, however, that James could have declined. If he did decline, there would be no reason to specialize. Same goes if James decided to trade with Quincy.

It is important to realize this lesson: rational individuals will gain from the trade if and only if each individual agrees that trading is better than by working by themselves. This consequence of rationality is built into its definition. A person will weigh the costs to the benefits. If the benefits weigh more, the person will cooperate with the trade; if the costs weigh more, the person will not cooperate. Either way, each individual checked to see if the opportunity cost of working with another person granted them a better "deal" than by working by themselves. We now understand gains from trade.

The Catch of this Simple Example

"While it may be true that working with other individuals is beneficial when you do not know how to do a task, it does not necessarily mean that working with other individuals is always best if the task you do is either similar or identical. Are there gains from trade in every situation imaginable?"

The answer to that question is "no, not always, but most of the time." The next section will explain why in great detail.

Absolute Advantage Versus Comparative Advantage

Imagine you have two people who work in the same factory, Boxing Glass. Their names are Harry and Steven. Harry can make two times more glasses and 3 times more boxes compared to Steven. We would say that Harry has an absolute advantage to Steven – Harry can make way more of both resources compared to Steven. Steven decides to alleviate both their workloads by working together. Should Harry make the trade?

Production Possibility Frontier

The two lines of productions for each person, Harry and Steven, are shown. The lines are colored differently. For any individual who is color blind, Harry is the top line, and Steven is the bottom line. The dot represents the level of production they wish to produce at.

The two lines of productions for each person, Harry and Steven, are shown. The lines are colored differently. For any individual who is color blind, Harry is the top diagonal line, and Steven is the bottom diagonal line. The dot represents the level of production they wish to produce.

A production possibility frontier (PPF, for short) is a graphical curve or line that represents the production of two goods for any entity. For this instance, we will make our math easier by using a line instead of a curve.

The figure above shows two lines: Harry's and Steven's. Since Harry's line is above and to the right of Steven's, Harry has an absolute advantage to Steven. For our purposes, we want to know Harry's opportunity cost of doing work. We have two methods to figure that out.

Method How to use it
Find the slope y=mx+b or m=y2y1x2x1.
Unitary opportunity cost Divide the two productions accordingly.

Each method will be shown below:

Calculating Opportunity Cost: Method 1

Before we start calculating, let's first review what the slope m means for us. The slope m is the rate of change in y over the change in x. The rate of change is simply a division of two points, x and y, that are subtracted. The two different values of y are subtracted in the numerator (top number of a fraction) and the two different values of x are subtracted in the denominator (bottom number of a fraction). The different values of x will be deliniated by different subscripts (little numbers next to and below the variable), x1 and x2. The same goes for the different values of y. You can only find the slope once you know two different ordered pairs, (x1,y1) and (x2,y2), of the line. This entire concept is summarized as

m=y2y1x2x1

The line of a function needs the slope of a function, but it also one other constant value before a linear function can be formed. Those values are called intercepts. The most common intercept (and the one we will focus on in this economics WikiBooks) is the y-intercept, defined as b in our formula. Simply put, the y-intercept is defined as the ordered pair (0,b). It is the value of y that will intersect with the vertical y column of our xy-graph.

Finally, once all is done, we add in a changing variable, x-values, to then define the equation y=mx+b. The equation will determine mx+b to find all possible y-values. A graphical representation will appear for all ordered pairs (x,y), where each point will be connected linearly.

Now that we know what a slope is, we can now find it in our graph.

Template:ExampleRobox The point at which Harry chooses to produce is at (3,2) or 3 boxes and 2 glasses. There is a multitude of ways to find the slope in this instance, yet only one such calculation will be shown. Let (x2,y2)=(3,2), and let (x1,y1)=(0,4). We can now find the slope.

m=(2)(4)(3)(0)

m=23

m=23

The calculation above represents the opportunity cost of 2Q1 (glasses) for every 3Q2 (boxes). While this is fine, we are looking for the opportunity cost of boxes to glasses. Since the glasses are in the numerator, and the boxes are in the denominator, we will just have to switch the places of the numbers. This is called taking the reciprocal, which we will represent as mr,h=Q2Q1, for Harry's reciprocal slope. This means our final answer is

mr,h=32Template:Robox/Close

Note that the way the fraction is written represents the opportunity cost of the situation. The final answer above tells us that 3 boxes is the opportunity cost of 2 glasses. This simply means that 3 boxes are lost to make 2 glasses. This represents the loss of 3Q2 for every 2Q1.

Final point to understand before we move on, the slope of the answer above can be found using any point along the PPF of Steven's production line. For example, for the ordered pair (x,y), defined as (Q2,Q1) for this graph, if (x2,y2)=(6,0) and (x1,y1)=(0,4), Harry's reciprocal slope mr,h=x2x1y2y1 would be defined as

(6)(0)(04)=64=32=1.5

The same answer as given in the example would be derived and evaluated. This is true because the PPF is linear, meaning the same "rate of change" is used for all points (Q2,Q1), where Q2 and Q1 is any positive rational number defined by the equation of the graph y=mx+b. Let's look at an example to find those points of the graph.

Template:ExampleRobox Before we get confused, let's make sure we understand what each variable stands for. Remember that Q1=y and Q2=x. Plugging (more formally known as "substituting") those values in, we find that the equation we are looking for is y=mx+b. This is simply just an equation for a line. In which case, let's go ahead and find the values for m and b.

Because we already know the slope of the line m=23, let's try to find b. The point at which the line intersects y seems to be at (0,4). Therefore, let's substitute those values into the equation to yield the final answer, keeping in mind that y=Q1 and x=Q2:

Q1=(23)Q2+(4)

Q1=23Q2+4Template:Robox/Close

The answer above is called a function. The function uses only one input, usually x to find an output, usually f(x). For example, y=mx+b finds the output y by evaluating every input x, given that m and b are constant. Usually, a question will define the output. Here's another example question that could have been asked, which is identical to the one above, only defined differently:

Template:ExampleRobox

Here, the "defined output" would have been H(Q2). The answer would have been nearly identical to Example 2, but would mean something different because of how a function is defined. The function to the example question would have been this:

H(Q2)=(23)Q2+(4)

H(Q2)=23Q2+4Template:Robox/Close

Using the function H(Q2), you can find any ordered pair (x,y)=(Q2,Q1). Substitute any rational value for Q2 and evaluate from there. Let's try Q2=2.

Template:ExampleRobox

H(2)=23(2)+4

H(2)=43+4

H(2)=43Q2+123

H(2)=83

The value we see above tells us that when x=Q2=2, y=Q1=83.Template:Robox/Close

If you don't have a graph, finding a function is great for finding any output y from an input x.

Calculating Opportunity Cost: Method 2

Before we get to the calculation, we need to know the definition of unitary opportunity cost. The unitary opportunity cost is the amount of an object we lose for every other one object. Take this example: if we want to choose between having three scoops of chocolate ice cream to two scoops of vanilla ice cream, we would say that the opportunity cost of having three chocolate ice cream scoops is two scoops of vanilla ice cream. However, this does not tell us how much chocolate ice cream scoops we waste per vanilla ice cream scoops. To do this, we need to compare. This is the fundamental reason why we have the unitary opportunity cost. This is usually useful whenever working with production.

One of the useful establishments of the PPF is that the PPF represents the opportunity cost of production. Any time that you can either make, for example, 3 x or 5 y, a PPF can represent the in-between production, making it also useful for finding the unitary opportunity cost of production.

Template:ExampleRobox Remember that we are looking for the number of Q2 lost for every Q1 made, meaning that the numerator (top number of the fraction) must be a value from the Q2 horizontal line, and the denominator (bottom number of the fraction) must be a value from the Q1 vertical line.

According to Harry's production line, Harry can make either 4 glasses or 6 boxes. Let's use those values to help find the unitary opportunity cost. First, set up a comparison between Q2Q1=x1, where x represents the number of Q2 lost for every 1Q1 made.

64=x1

In accordance to mathematical axioms, any number x divided by 1 is equal to x. As such, all that is needed is to divide 64.

64=32=1.5=xTemplate:Robox/Close

Note that the final answer is similar to when you use the slope of the PPF to represent the opportunity cost. Here is a calculation to help you find this out:

First, notice that the fraction mr,h is Q2Q1, which let us find x in this equation: Q2Q1=x1 where 1 represents 1Q1.

32=x1

Since x1=x is true because of mathematical axioms and postulates, simply divide 32 to find the unitary opportunity cost of production for mr,h.

32=1.5

Because 1.5=x, we are done, and can now interpret the unitary opportunity cost of boxes to glasses since the fraction to the right of the equal sign, x1, is a comparison of the slope mr,h.

32=1.51

The only difference is that the answer is negative for the slope but positive for the unitary opportunity cost. To fix this, simply take the absolute value of both to yield the same answer.

|32|=32=1.5=x

From this, we learned that the absolute value of the slope for any entity's PPF is identical to the unitary opportunity cost of any entity's production.

Before we move on to the next section, try to find Steven's opportunity cost of production. Hint: Look at the PPF at the beginning of the section.

<quiz display="simple"> {What is Steven's opportunity cost of producing 1 glass? (2 marks.) |type="()" coef="2"} - 1 glass || The opportunity cost is what you lose everytime you produce or get something. This is what you have after getting 1 glass, which is to say, you will have 1 glass after producing one glass. This is not the opportunity cost. + 1 box || Because this is the opportunity cost of getting one glass, this is what you lose after gaining 1 glass. You understand the basic concept of opportunity cost. - 2 boxes || This would be the opportunity cost of your choice, if you were asked "what is Steven's opportunity cost of producing 2 glasses?" - 1.5 boxes || This would be the opportunity cost of 1 glass for Harry's PPF, not Steven's. Make sure to read the correct line. - 0.6¯ glasses. || Not only is that not the opportunity cost of glasses, this would be the opposite of what you are looking for. This is the unitary opportunity cost of getting 1 box for Harry's line.

{Find Steven's slope of the PPF when producing the reciprocal, mr,s, where s is used to deleniate Steven's line, to help the find the loss of Q2 for every Q1 gained. (1 mark.) |type="()"} - mr,s=23 || This is not the reciprocal of slope m=y2y1x2x1. Instead, this is the slope of Harry's opportunity cost mh. We are looking for Steven's reciprocal slope of the line. - mr,s=32 || While this is a recirpocal of slope m=y2y1x2x1, this is not Steven's slope. Instead, this is Harry's opportunity cost of the reciprocal mr,h=x2x1y2y1. We are looking for Steven's reciprocal slope of the line. - mr,s=21 || This is not the slope of either Steven's or Harry's line. Instead, this is a common mistake made when doing slope in which an individual economist may simply forget to subtract the different x-values and y-values. Remember: m=y2y1x2x1. If you did not subtract the different y-values and y-values, based on two different points along the line, you would not get the correct answer. + mr,s=11 || This is the correct slope of the Steven's line, either reciprocal or not. If an individual forgot to take the reciprocal, that person would be lucky this time. Remember: m=y2y1x2x1. If you did not subtract the different y-values and y-values, based on two different points along the line, you would not get the correct answer. - mr,s=12 Remember: m=y2y1x2x1. If you did not subtract the different y-values and y-values, based on two different points along the line, you would not get the correct answer. </quiz>

Comparative Advantage

The methods of calculation we learned now helps us answer the ultimate question here: should Harry make the trade? Since we know the slope of both Harry, mh, and Steven, ms, let's use those values.

Individual Slope of |m| Slope of |mr|
Harry |mh|=0.6¯ |mr,h|=1.5
Steven |ms|=1 |mr,s|=1

Remember: the slope of |m| represents the loss of Q1 for every Q2, while the slope of |mr| represents the loss of Q2 for every Q1. Let's now compare the opportunity cost of each individual.

  • Harry can lose fewer glasses from gaining boxes than Steven can: 0.6¯<1
  • Steven can lose fewer boxes from gaining glasses than Harry can: 1<1.5

The phenomenon demonstrated above illustrates a special circumstance of economics that allows us to earn insight from it. In fact, this special circumstance has its own name: comparative advantage. The comparative advantage is the advantage of an individual in which the circumstances allow them to produce more of a good or service at a lower opportunity cost compared to another individual. This is the reason why we "gain from trade." By extension, this is where Harry gains from trade.

Note: the best way to find the comparative advantage is through the unitary opportunity cost. This is what we did in this section. Remember that the slope and the unitary cost answer are the same. We have proven that. This means that the opportunity cost of, for example, 23Q1 is lost to make 1Q2. The slope is the unitary opportunity cost. That is what we proved last time, and this is why the slope or the unitary opportunity cost can be used in the table above and still prove the same thing we proved: Harry has a comparative advantage in making boxes and Steven has a comparative advantage in making glasses.

Taking "Advantage" of Comparative Advantage

Remember what we learned at the beginning? By specializing people's talents, everyone as a whole can gain from the trade of talents. Here is no different, aside from the vernacular. Let's try to find the optimal trade.

Template:ExampleRobox We know that Harry loses fewer glasses per each box made, so Harry should specialize in making boxes. If Harry wants to find the optimal unit of boxes for both him and Steven, he needs to find the number of units that will not go over either Steven's or Harry's opportunity cost of production.

Remember: the opportunity cost of production is the slope of the PPF. Steven trading one box for 23Q2 would not be optimal for Harry because Harry could just make that many himself. Steven trading one box for 1Q2 would be optimal for Harry but not for Steven because he would go over his opportunity cost of production. Therefore, the number of Q2 units needed to be made follows this relationship:

23<Q2<1

0.6¯<Q2<1

Remember: the number of units is per thousand, so those are the possible number of units to trade. The number of glasses to trade that would be optimal for both Harry and Steven could be 34 of one thousand units, or 750 glasses. Nevertheless, any number between 23<Q2<1 of one thousand units is optimal, so any integer answer between those ranges are necessarily the best for both parties.Template:Robox/Close

Note: the same procedure done above will work when trading for glasses. The only difference will be the number of boxes traded for one 1 glass. Try out the next example problem to see if you understand. Review the previous sections so that you know the numbers to look for.

<quiz display="simple"> {Harry and Steven want to look like stand-out employees. Since they know they will gain from trading, they decide to trade a number of boxes made for glasses and vice-versa. If Steven decides to trade 1 glass, how many boxes should he gain such that the choice will benefit both parties? (3 marks.) |type="{}" coef="3"} Write your answer as a positive integer (e.g. "1, 2, 3, 4," etc.) in normal notation. Do not write any letters in your answer. Do not express your answer as a range. { 1001-1499 _7 } || Since we are looking for the number of boxes needed to be traded to Steven, we need to find a range of numbers such that it satisfies both Steven's opportunity cost and Harry's opportunity cost. First, note that Steven loses 1 glass per box, meaning that the number of boxes needed to be traded is a number greater than 1. Note that Harry's opportunity cost for one glass is 32 boxes. Thus, the range of boxes needed to trade is the following relationship: 1<B<32. Remember that these numbers are per thousand, so it ranges between 1,000 and 1,500. Thus, any number in between 1,000 and 1,500 is correct, so long as the answer is a positive integer. </quiz>

Conclusion

Although both Harry and Steven work the same job, they still benefit from trading. Keep in mind, though, that this only works if a comparative advantage exists for both parties. If one party in the trading relationship does not have a comparative advantage, then why trade at all? Work by yourself in that instance. However, this rarely happens, if at all.

The examples shown in the previous subsections are in no way intended to be realistic. After all, people don't barter, instead they get paid with income or money or some other form of monetary transaction. However, the lessons learned within will extend to both Microeconomics and Macroeconomics. Plus, the examples shown before amplify the rational fact of humans: if the opportunity cost of trade is more than not trading, people will not trade.

Finally, before ending with a few comprehension questions, let's realize one more fact: when markets extend in the skill or production of goods, the number of times specialization occurs will increase, and thus the gains from trade.

Check your Understanding

It is recommended you review the previous sections before you do these questions.

<quiz> {The BEST reason specialization and trade exist is due to |type="()"} + comparative advantage. || This is the best answer to this stem because the comparative advantage, by definition, is an advantage that exists for one particular party in which the opportunity cost of making a good is lesser for one individual than for another. As the person with the lesser opportunity cost in making the good, more of that good can be made without losing another good. Both parties are made better off because of this reason. The opportunity cost of making goods is lessened. - absolute advantage. || The absolute advantage does NOT explain why trade and specialization. If anything, this will discourage specialization and trade because if one particular individual has a greater advantage in making more of both goods than another individual, why would the individual who has the absolute advantage trade with the other person if they will not gain from it. Remember that an individual will only trade if and only if both persons agree that their opportunity will be lessened because of it. - Pareto efficiency. || For anyone who does not know, Pareto efficiency is the idea that an outcome that fulfills a goal without lessening the well-being of another individual, after increasing the well-being of someone else, is most sufficient. While it would be accurate to say that after specialization and trade, more Pareto efficiency is achieved, it would not be accurate to say that specialization and trade exist due to specialization. - opportunity cost. || A larger opportunity cost if no trading occurs would be a reason why specialization and trade exist, but that is not what this distractor describes. Instead, this answer choice implies that specialization and trade exist due to the existence of trade-off. Unless a larger trade-off exists when not trading with another person, there will be no trade with rational individuals. - scarcity. || While scarcity does exist, just because it does exist does not signify the existence of specialization and trade. Also, picking this answer choice implies the conflation of scarcity with opportunity cost. Opportunity cost, an implication of scarcity, states that we give up a number of one particular resource to gain another good. Scarcity is a fact of human existence that states we have limited sources to provide our unlimited desires. While scarcity does imply opportunity cost's existence, they are not one and the same. If you selected this answer choice, make sure to distinguish the two.

{The y-axis, denoted as Qy, represents the number of coconuts scavenged while the x-axis, denoted as Qx, represents the number of fish caught. If Harry's slope mh=12 while Steven's slope ms=3, for the person who has a comparative advantage in catching fish, what is the opportunity cost of catching 2 fish? (3 marks.) |type="{}" coef="3"} { 6 _1 } coconuts. || Notice that the slope m is a representation of the change in y, y2y1, over the change in x, x2x1. Since the slope m is the opportunity cost of a choice of Qy for every Qx, the one who has the lower opportunity cost is Harry. However, this is only true for the number of coconuts to the number of fish caught. We are looking for the person with the comparative advantage in catching fish. Let y2y1=ΔQy, let x2x1=ΔQx, and let the reciprocal of m be mr. If m=ΔQyΔQx, then mr=ΔQxΔQy. Remember that Qx is the number of fish caught. Because of this relationship, take the reciprocal of each person's opportunity cost. Note that |13|<|2|. The person who has the lower absolute value opportunity cost is Steven. Note that the opportunity cost of 1Qy is 3Qx. Because of that, use the following relationship to find the comparable opportunity cost of catching 2 fishes: 13=2x, where x is the number of coconuts found. Once we work out the relationship, the number of coconuts found x=6 is the opportunity cost of gathering 2 fish. </quiz>


Template:BookCat