LMIs in Control/pages/Mixed H2 Hinf optimal state feedback control

From testwiki
Revision as of 07:48, 16 April 2020 by imported>DannyS712 (Update syntaxhighlight tags - remove use of deprecated <source> tags)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

LMIs in Control/pages/Mixed H2 Hinf optimal state feedback control


Mixed H/H2 Optimal State Feedback Control

The Optimization Problem

This Optimization problem involves the same process used on the full-feedback control design; however, instead of optimizing the full output-feedback design of the Optimal output-feedback control design. This is done by defining the 9-matrix plant as such: Am×m, B1m×n, B2m×p, C1n×m, D11n×n, D12n×p, C2=I, D21=0, and D22=0. Using this type of optimization allows for stacking of optimization LMIs in order to achieve the controller synthesis for both H and H2.

The Data

The data is dependent on the type the state-space representation of the 9-matrix plant; therefore the following must be known for this LMI to be calculated: Am×m, B1m×n, B2m×p, C1n×m, D11n×n, D12n×p, C2=I, D21=0, and D22=0.

The LMI: Mixed H/H2 Optimal State Feedback Control

There exists the scalars γ1, γ2, along with the matrices X>0, W and Z where:

||S(P,K(0,0,0,F))||H2+||S(P,K(0,0,0,F))||H22γ1+γ2[XAT+ZTB2T+AX+B2ZB1XC1T+ZTD12TB11TID11TC1X+D12ZD11γ1I]<0traceW<γ2AX+XAT+B2Z+ZB2+B1B1T<0[X(C1X+D12Z)TC1X+D12ZW]>0

Where F=ZX1 is the controller matrix.

Conclusion:

The results from this LMI give a controller that is a mixed optimization of both an H, and H2 optimization.


Implementation

% Mixed Hinf/H2 state feedback optimization
% -- EXAMPLE --

clear; clc; close all;

%Given
A  = [ 1  1  0  1  0  1;
      -1 -1 -1  0  0  1;
       1  0  1 -1  1  1;
      -1  1 -1 -1  0  0;
      -1 -1  1  1  1 -1;
       0 -1  0  0 -1 -1];
  
B1 = [ 0 -1 -1;
       0  0  0;
      -1  1  1;
      -1  0  0;
       0  0  1;
      -1  1  1];

B2 = [ 0  0  0;
      -1  0  1;
      -1  1  0;
       1 -1  0;
      -1  0 -1;
       0  1  1];

C1 = [ 0  1  0 -1 -1 -1;
       0  0  0 -1  0  0;
       1  0  0  0 -1  0];

D12= [ 1    1    1;
       0    0    0;
       0.1  0.2  0.4];

D11= [ 1  2  3;
       0  0  0;
       0  0  0];
   
%Error
eta = 1E-4;

%sizes of matrices
numa  = size(A,1);    %states
numb2 = size(B2,2);  %actuators
numb1 = size(B1,2);   %external inputs
numc1 = size(C1,1);   %regulated outputs

%variables
gam1= sdpvar(1);
gam2= sdpvar(1);
Y   = sdpvar(numa);
Z   = sdpvar(numb2,numa,'full');
W   = sdpvar(numc1);

%Matrix for LMI optimization
M1  = Y*A'+A*Y+B2*Z+Z'*B2'+B1*B1';
M2  = [Y            (C1*Y+D12*Z)'  ;
       C1*Y+D12*Z   W              ];
M3  = [Y*A'+A*Y+Z'*B2'+B2*Z     B1              Y*C1'+Z'*D12';
      B1'                      -eye(numb1)      D11';
      C1*Y+D12*Z                D11            -gam1*eye(numc1)];

%Constraints
Fc = (M1 <= 0);
Fc = [Fc; M3 <= 0];
Fc = [Fc; trace(W) <= gam2];
Fc = [Fc; Y  >= eta*eye(numa)];
Fc = [Fc; M2 >= zeros(numa+numc1)];

opt = sdpsettings('solver','sedumi');

%Objective function
obj = gam1 + gam2;

%Optimizing given constraints
optimize(Fc,obj,opt);

F = value(Z)*inv(value(Y)); %#ok<MINV>

fprintf('\n\nState-Feedback controller F matrix')
display(F)


Return to Main Page:

Template:BookCat