LMIs in Control/pages/Hankel Norm for Affine Parametric Varying Systems

From testwiki
Revision as of 15:38, 29 August 2021 by imported>Dirk Hünniger (Return to Main Page:)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The System

x˙(t)=Ax(t)+Bww(t),z(t)=Cz(θ)x(t)+Dzw(θ)w(t),

where Cz and Dzw depend affinely on parameter θp.

The Data

The matrices A,Bw,Cz(.),Dzw(.).

The Optimization Problem:

Solve the following semi-definite program

min{Q0,γ2,θ}γ2s.t.Dzw(θ)=0,AQ+QA+Cz(θ)Cz(θ)0,γ2IWc1/2QWc1/20,

where Wc is the controllability Gramian, i.e., Wc0eAtBwBweAtdt.

Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/0faedcdd9fba92bc27a318d80159c04a0b342f35

Conclusion

The Hanakel norm (i.e., the square root of the maximum eigenvalue) of Hθ is less than γ if and only if the above LMI holds and the value function returns the maximum provable Hankel norm.

Remark

Dzw is assumed to be zero.


Return to Main Page:

Template:BookCat