Famous Theorems of Mathematics/π is transcendental/Symmetric polynomials

From testwiki
Revision as of 13:03, 1 August 2024 by imported>יהודה שמחה ולדמן
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Denest

Definition 1

A permutation is a bijective function from a set to itself.

Let X={X1,,Xn} be a finite set. The function σ:XX is called a permutation if and only if it is one-to-one and onto.

Meaning, for all 1in there exists a unique 1jn such that σ(Xi)=Xσ(i)=Xj.

The set of all permutations of the elements of X is denoted by SX.

Example

For X={1,2,3} there are 3!=6 different permutations:

σ1=[123123],σ2=[123132]σ3=[123213],σ4=[123231]σ5=[123312],σ6=[123321]

In general, if |X|=n then |SX|=n!=12n.

Definition 2

Let F(Xn) be a polynomial. Let us define:

σ(F):=F(Xσ(1),,Xσ(n))

Properties

Let F(Xn),G(Xn) be polynomials. Then we have:

  • σ(cF)=cσ(F) such that c.
  • σ(F±G)=σ(F)±σ(G)
  • σ(FG)=σ(F)σ(G)
  • (σ1σ2)(F)=σ1(σ2(F))

Proof

  • By definition, the permutation is applied on the variable indexes only.
  • First, let F,G be monomials of the form
F=aX1a1XnanG=bX1b1Xnbnσ(F±G)=σ(aX1a1Xnan±bX1b1Xnbn)=aXσ(1)a1Xσ(n)an±bXσ(1)b1Xσ(n)bn=σ(aX1a1Xnan)±σ(bX1b1Xnbn)=σ(F)±σ(G)
We can generalize by induction for F=i1=1k1Fi1,G=i2=1k2Gi2, such that Fi1,Gi2 are monomials.
  • Same as before, let F,G be monomials of the form
F=aX1a1XnanG=bX1b1Xnbnσ(FG)=σ(aX1a1XnanbX1b1Xnbn)=abσ(X1a1+b1Xnan+bn)=abXσ(1)a1+b1Xσ(n)an+bn=(aXσ(1)a1Xσ(n)an)(bXσ(1)b1Xσ(n)bn)=σ(aX1a1Xnan)σ(bX1b1Xnbn)=σ(F)σ(G)
Again, We can generalize by induction for F=i1=1k1Fi1,G=i2=1k2Gi2, such that Fi1,Gi2 are monomials:
σ(FG)=σ(i1=1k1Fi1i2=1k2Gi2)=σ(i1=1k1i2=1k2Fi1Gi2)=i1=1k1i2=1k2σ(Fi1Gi2)=i1=1k1i2=1k2σ(Fi1)σ(Gi2)=i1=1k1σ(Fi1)i2=1k2σ(Gi2)=σ(i1=1k1Fi1)σ(i2=1k2Gi2)=σ(F)σ(G)
  • By definition we get:
(σ1σ2)(F)=F(X(σ1σ2)(1),,X(σ1σ2)(n))=F(Xσ1(σ2(1)),,Xσ1(σ2(n)))=σ1(F(Xσ2(1),,Xσ2(n)))=σ1(σ2(F))

Definition 3

Let P(Xn) be a polynomial. Then it is called symmetric if

σ(P)=P

for all permutations σ:{1,,n}{1,,n}.

Examples

  • A symmetric polynomial:
P(x1,x2,x3)=x12x22x32+3x1+3x2+3x3=x12x32x22+3x1+3x3+3x2=x22x12x32+3x2+3x1+3x3=x22x32x12+3x2+3x3+3x1=x32x12x22+3x3+3x1+3x2=x32x22x12+3x3+3x2+3x1
  • A non-symmetric polynomial:
P(x1,x2,x3)=x1+x2x3x1+x3x2x2+x1x3x2+x3x1x3+x1x2x3+x2x1

Properties

  • The sum and product of symmetric polynomials is a symmetric polynomial.
  • Let F be a polynomial in variables Y1,,Ym, and let G1,,Gm be symmetric polynomials in variables X1,,Xn.
Then F(Gm(Xn)) is also symmetric in variables X1,,Xn.

Proof

  • This follows from the properties in definition 2 and the symmetric polynomial definition above.
  • By definition we get:
σ(F(Gm(Xn)))=σ(F(G1(Xn),,Gm(Xn)))=F(σ(G1(Xn)),,σ(Gm(Xn)))=F(G1(Xn),,Gm(Xn))=F(Gm(Xn))

Template:Header

Template:BookCat