Abstract Algebra/Group tables
The Group of Order 2
Here is the group table for the only group of order 2
| + | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |
The Group of Order 3
Here is the group table for the only group of order 3
| + | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 1 | 2 |
| 1 | 1 | 2 | 0 |
| 2 | 2 | 0 | 1 |
The Groups of Order 4
Here are the group tables for the only groups of order 4
The cyclic group of order 4
| Two ways of documenting the same group structure | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| To see more clearly that these two tables actually have the same | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| group structure you'll need to rename the entries | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 0 | maps to | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 1 | maps to | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2 | maps to | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | maps to | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 1 + 2 = 3 | maps to | 2 × 4 = 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Notice that regardless of the way we notate this group, there is an element that generates the whole group.
The other group of order 4
For the following example, image the number 0 through 3 written in binary, then add the digits without any carrying. For example,
2 + 3 10 + 11 01 1
Since binary addition (without carry) is isomorphic to we view this group as being two copies of joined together. That's where the name comes from.
| + | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 2 | 1 | 0 |
The Group of Order 5
| + | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |
Other small groups
A list of groups of order 1 through 31 compiled by John Pedersen, Dept of Mathematics, University of South Florida [1]
A list of groups names and some examples of group graphs from Wolfram, makers of Mathematica. [2]