File:GaussianProcessDecomposition DecomposedSignals.svg

From testwiki
Jump to navigation Jump to search
Original file (SVG file, nominally 378 × 270 pixels, file size: 48 KB)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: Dividing the sum into the components with known Gaussian processes. The original signals are dashed.
Deutsch: Zerlegung der Summe in die Bestandteile mit bekannten Gaußprozessen. Die ursprünglichen Signale sind gestrichelt dargestellt.
Date
Source Own work
Author Christian Schirm
SVG development
InfoField
 The SVG code is valid.
 This plot was created with Matplotlib.
Source code
InfoField

Python code

#This source code is public domain
#Author: Christian Schirm

import numpy, scipy.spatial
import matplotlib.pyplot as plt
import imageio

numpy.random.seed(50)

# Covariance matrix
def covMat(x1, x2, covFunc, noise=0):
    cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
    if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
    return cov

# Decomposition of e.g. sum of signals into components
def decompose(xIn, yIn, xOut, covFuncIn, covFuncListOut):
    Ckk = covMat(xIn, xIn, covFuncIn, noise=0)
    n = len(covFuncListOut)
    N = len(xOut)
    Cuu = numpy.zeros((n*len(xOut), n*len(xOut)))
    Cuk = numpy.zeros((n*len(xOut), len(xOut)))
    for i,covOut in enumerate(covFuncListOut):
        Cuu[i*N:(i+1)*N, i*N:(i+1)*N] = covMat(xOut, xOut, covOut, noise=0)
        Cuk[i*N:(i+1)*N,:] = covMat(xOut, xIn, covOut, noise=0)
    CkkInv = numpy.linalg.inv(Ckk)
    y = Cuk.dot(CkkInv.dot(yIn))
    sigmaSplit = (Cuu - Cuk.dot(CkkInv.dot(Cuk.T)))
    return y, sigmaSplit

# Covariance function 1: smooth random signal underground
covFunc1 = lambda d: 2.7**2*numpy.exp(-((d/1.)**2))

# Covariance function 2: periodic signal
covFunc2 = lambda d: 2.7**2*numpy.exp(-0.4*numpy.abs((numpy.sin(numpy.pi*d/2.5))))

# Covariance function 3: white gaussian noise
covFunc3 = lambda d: d*0 + 0.8**2*(numpy.abs(d)<0.00001)

# Covariance function of sum
covFuncSum = lambda d: covFunc1(d) + covFunc2(d) + covFunc3(d)

x = numpy.linspace(0, 10, 300)

# Generate random signales
Y = []
for covFunc in covFunc1, covFunc2, covFunc3:
    y = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc))
    Y += [y]

# perform decomposition
YSplit = []
YSigma = []
ySplit, sigmaSplit = decompose(x, Y[0]+Y[1]+Y[2], x, covFuncSum, [covFunc1, covFunc2, covFunc3])
YSplit = ySplit.reshape(3,len(x))

# set prior mean of signals 1 and 2
meanShift = 3
YSplit[0] += meanShift
Y[0] += meanShift
YSplit[1] -= meanShift
Y[1] -= meanShift

# Random gaussian process signals
fig = plt.figure(figsize=(4.2,3.0))
for i,c in (2,1), (0,0), (1,2):
    plt.plot(x, Y[i], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_3RandomSignals.svg')
plt.show()

# Sum of all 3 signals
fig = plt.figure(figsize=(4.2,3.0))
plt.plot(x, (Y[0]+Y[1]+Y[2]), 'r-', label=u'Prediction')
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_SumOf3Signals.svg')
plt.show()

# plot figures
# Decomposion of sum into single signals
fig = plt.figure(figsize=(4.2,3.0))
for i,c in (2,1), (0,0), (1,2):
    plt.plot(x, Y[i], '--', color='C'+str(c), label=u'Prediction',alpha=0.4)
    plt.plot(x, YSplit[i], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_DecomposedSignals.svg')
plt.show()

# Uncertainty animation

t = numpy.arange(0, 1, 0.02)
covFunc = lambda d: numpy.exp(-(3*numpy.sin(d*numpy.pi))**2) # Covariance function
chol = numpy.linalg.cholesky(covMat(t, t, covFunc, noise=1E-5))
r = chol.dot(numpy.random.randn(len(t), len(sigmaSplit)))
cov = sigmaSplit+1E-5*numpy.identity(len(sigmaSplit))
rSmooth = numpy.linalg.cholesky(cov).dot(r.T).reshape(3,len(x),len(t))

images = []
fig = plt.figure(figsize=(4.2,3.0))
for ti in [0]+range(len(t)):
    for i,c in (2,1), (0,0), (1,2):
        plt.plot(x, YSplit[i] + rSmooth[i,:,ti], color='C'+str(c), label=u'Prediction',alpha=1)
    plt.axis([0,10,-10,10])
    plt.xlabel('t')
    plt.tight_layout()
    fig.canvas.draw()
    s, (width, height) = fig.canvas.print_to_buffer()
    images.append(numpy.fromstring(s, numpy.uint8).reshape((height, width, 4)))
    fig.clf()

# Save GIF animation
imageio.mimsave('GaussianProcessDecomposition_Uncertainty.gif', images[1:])

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

3 September 2018

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:22, 1 August 2019Thumbnail for version as of 19:22, 1 August 2019378 × 270 (48 KB)wikimediacommons>PhysikingerWith random seed

The following page uses this file: