File:Gaussianprocess SensorCalibrationCurvesMean.svg

From testwiki
Jump to navigation Jump to search
Original file (SVG file, nominally 306 × 230 pixels, file size: 27 KB)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
Deutsch: Mean and standard deviation of sample set
Date
Source Own work
Author Physikinger
SVG development
InfoField
 The SVG code is valid.
 This plot was created with Matplotlib.
Source code
InfoField

Python code

#This source code is public domain
#Author: Christian Schirm

import numpy, scipy.spatial
import matplotlib.pyplot as plt
numpy.random.seed(1)

def covMat(x1, x2, covFunc, noise=0):  # Covariance matrix
    cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
    if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
    return cov

N=15
x = numpy.linspace(0, 10, 100)
y = [4*x**.7*(0.3+0.4*numpy.random.rand()) + (numpy.random.rand()-0.5)*2.8*numpy.sin(0.3*x*(1+0.05*numpy.random.rand())) for i in range(N)]

fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
for i,iy in enumerate(y): plt.plot(x,iy,color=plt.cm.tab10(i*1./N))
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibrationCurves.svg')

A = numpy.array(y)
m = numpy.mean(A,axis=0)
cov = (A-m).T.dot((A-m))/(len(A)-1)
sigma = numpy.sqrt(cov.diagonal())

fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
plt.fill_between(x, m - sigma, m + sigma, color = '0.85')
plt.plot(x,m,'-')
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibrationCurvesMean.svg')

iTest = numpy.array([45, 95])
yTest = m[iTest] + [+0.5,+2]

mask = numpy.zeros(len(cov),'bool')
mask[iTest[-1:]] = True

Ckk = cov[mask][:,mask]
Cuu = cov
numpy.fill_diagonal(Cuu,numpy.diag(Cuu)+0.000001)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = cov[:,mask]
yPred = m + numpy.dot(numpy.dot(Cuk,CkkInv), yTest[-1:] - m[mask])
sigma = numpy.sqrt(numpy.maximum(0,numpy.diag(Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T))))

fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
plt.fill_between(x, yPred - sigma, yPred + sigma, color = '0.85')
plt.plot(x,yPred,'-')
plt.plot(x[mask],yTest[-1:],'ko')
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibration1Point.svg')

mask = numpy.zeros(len(cov),'bool')
mask[iTest] = True

Ckk = cov[mask][:,mask]
Cuu = cov
numpy.fill_diagonal(Cuu,numpy.diag(Cuu)+0.000001)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = cov[:][:,mask]
yPred = m + numpy.dot(numpy.dot(Cuk,CkkInv), yTest - m[mask])
sigma = numpy.sqrt(numpy.maximum(0,numpy.diag(Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T))))

fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
plt.fill_between(x, yPred - sigma, yPred + sigma, color = '0.85')
plt.plot(x,yPred,'-')
plt.plot(x[mask],yTest,'ko')
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibration2Point.svg')

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

1 March 2018

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current22:26, 23 March 2023Thumbnail for version as of 22:26, 23 March 2023306 × 230 (27 KB)wikimediacommons>PhysikingerEnglish

The following page uses this file: