File:Gaussianprocess TrendSnowboard.svg
From testwiki
Jump to navigation
Jump to search
Size of this PNG preview of this SVG file: 540 × 270 pixels. Other resolutions: 320 × 160 pixels | 640 × 320 pixels | 1,024 × 512 pixels | 1,280 × 640 pixels | 2,560 × 1,280 pixels.
Original file (SVG file, nominally 540 × 270 pixels, file size: 38 KB)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionGaussianprocess TrendSnowboard.svg |
English: Extrapolation with a Gaussian process of the Google Trend for the search word "snowboard |
| Date | |
| Source | Own work |
| Author | Physikinger |
| SVG development InfoField | |
| Source code InfoField | Python code#This source code is public domain
#Author: Christian Schirm
import numpy, scipy.spatial
import matplotlib.pyplot as plt
# Data source: https://www.google.de/trends/explore?date=all&q=Snowboard
x = numpy.array([ 2004.08, 2004.17, 2004.25, 2004.33, 2004.42, 2004.50, 2004.58,
2004.67, 2004.75, 2004.83, 2004.92, 2005.00, 2005.08, 2005.17, 2005.25,
2005.33, 2005.42, 2005.50, 2005.58, 2005.67, 2005.75, 2005.83, 2005.92,
2006.00, 2006.08, 2006.17, 2006.25, 2006.33, 2006.42, 2006.50, 2006.58,
2006.67, 2006.75, 2006.83, 2006.92, 2007.00, 2007.08, 2007.17, 2007.25,
2007.33, 2007.42, 2007.50, 2007.58, 2007.67, 2007.75, 2007.83, 2007.92,
2008.00, 2008.08, 2008.17, 2008.25, 2008.33, 2008.42, 2008.50, 2008.58,
2008.67, 2008.75, 2008.83, 2008.92, 2009.00, 2009.08, 2009.17, 2009.25,
2009.33, 2009.42, 2009.50, 2009.58, 2009.67, 2009.75, 2009.83, 2009.92,
2010.00, 2010.08, 2010.17, 2010.25, 2010.33, 2010.42, 2010.50, 2010.58,
2010.67, 2010.75, 2010.83, 2010.92, 2011.00, 2011.08, 2011.17, 2011.25,
2011.33, 2011.42, 2011.50, 2011.58, 2011.67, 2011.75, 2011.83, 2011.92,
2012.00, 2012.08, 2012.17, 2012.25, 2012.33, 2012.42, 2012.50, 2012.58,
2012.67, 2012.75, 2012.83, 2012.92, 2013.00, 2013.08, 2013.17, 2013.25,
2013.33, 2013.42, 2013.50, 2013.58, 2013.67, 2013.75, 2013.83, 2013.92,
2014.00, 2014.08, 2014.17, 2014.25, 2014.33, 2014.42, 2014.50, 2014.58,
2014.67, 2014.75, 2014.83, 2014.92, 2015.00, 2015.08, 2015.17, 2015.25,
2015.33, 2015.42, 2015.50, 2015.58, 2015.67, 2015.75, 2015.83, 2015.92,
2016.00, 2016.08, 2016.17, 2016.25, 2016.33, 2016.42, 2016.50, 2016.58])
y = numpy.array([ 100., 75., 44., 24., 18., 17., 19., 26., 37.,
57., 77., 95., 84., 70., 43., 21., 16., 15.,
18., 24., 33., 50., 70., 94., 78., 80., 43.,
21., 14., 13., 15., 22., 31., 46., 61., 72.,
60., 49., 28., 15., 11., 11., 13., 17., 23.,
33., 50., 68., 58., 44., 27., 14., 10., 10.,
12., 16., 22., 31., 46., 66., 61., 44., 26.,
13., 10., 11., 12., 16., 21., 31., 39., 56.,
56., 65., 28., 13., 10., 9., 10., 13., 17.,
24., 37., 57., 44., 30., 19., 10., 7., 8.,
9., 11., 14., 20., 29., 37., 36., 30., 15.,
10., 10., 8., 8., 9., 12., 16., 23., 34.,
34., 26., 15., 7., 5., 5., 6., 7., 10.,
14., 22., 31., 28., 42., 14., 6., 5., 4.,
5., 7., 8., 11., 18., 25., 27., 21., 11.,
5., 4., 4., 5., 6., 7., 10., 16., 21.,
27., 18., 10., 6., 4., 4., 4.])
x_known = x
y_known = numpy.log(y)
x_unknown = numpy.arange(2016.5,2023,1/12.)
def covFunc(d):
return 0.8*numpy.exp(-numpy.abs(numpy.sin(numpy.pi*d))/0.5 -numpy.abs(d/25.)**2 - 2.5) + \
(0.2-0.01)*numpy.exp(-(numpy.abs(numpy.sin(numpy.pi*d/4))/0.2)) + 0.01*numpy.exp(-numpy.abs(d/45.))
def covMat(x1, x2, covFunc, noise=0):
cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
if noise: numpy.fill_diagonal(cov, numpy.diag(cov) + noise)
return cov
Ckk = covMat(x_known, x_known, covFunc, noise=0.02)
Cuu = covMat(x_unknown, x_unknown, covFunc, noise=0.00)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = covMat(x_unknown, x_known, covFunc, noise=0)
m = numpy.mean(y_known)
y_unknown = m + numpy.dot(numpy.dot(Cuk,CkkInv), y_known - m)
sigmaPrior = numpy.sqrt(numpy.mean(numpy.square(y_known)))
sigma = sigmaPrior*numpy.sqrt(numpy.diag(Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T)))
fig = plt.figure(figsize=(6,3), dpi=100)
plt.plot(x,y,'-')
plt.plot(x_unknown,numpy.exp(y_unknown),'r-')
plt.fill_between(x_unknown, numpy.exp(y_unknown - sigma), numpy.exp(y_unknown + sigma), color = '0.85')
plt.xlim(2004,2022.5)
plt.xticks(numpy.arange(2004,2023,2))
plt.ylim(0,100)
plt.vlines([2016.5], 0, 100,'0.6','--')
plt.title('Google trend for the search term "Snowboard"')
plt.ylabel('Searches per montht (%)')
plt.savefig('Gaussianprocess_TrendSnowboard.svg')
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Captions
Extrapolation with Gaussian process
Items portrayed in this file
depicts
some value
21 August 2017
image/svg+xml
38,939 byte
2225340baef998a651c2aaea235e690f659ced54
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 21:52, 21 March 2023 | 540 × 270 (38 KB) | wikimediacommons>Physikinger | Uploaded own work with UploadWizard |
File usage
The following page uses this file: