File:Gaussianprocess gapUncertainty.gif
From testwiki
Jump to navigation
Jump to search
Gaussianprocess_gapUncertainty.gif (400 × 200 pixels, file size: 156 KB, MIME type: image/gif, looped, 50 frames, 5.0 s)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionGaussianprocess gapUncertainty.gif |
English: Gaußprozess-Regression: Unsicherheit der Interpolation einer Lücke, dargestellt durch Zufallsfluktiononen gemäß der a-posteriori-Kovarianzfunktion. |
| Date | |
| Source | Own work |
| Author | Physikinger |
| GIF development InfoField | |
| Source code InfoField | Python code# This source code is public domain
# Author: Christian Schirm
import numpy, scipy.spatial
import matplotlib.pyplot as plt
import imageio
def covMat(x1, x2, covFunc, noise=0): # Covariance matrix
cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
return cov
numpy.random.seed(107)
covFunc1 = lambda d: 2*numpy.exp(-numpy.abs(numpy.sin(1.55*numpy.pi*d))**1.9/3 - d**2/7.)
covFunc2 = lambda d: 1*numpy.exp( - d**2/6.)
covFunc = lambda d: 1.5*numpy.exp(-numpy.abs(numpy.sin(1.55*numpy.pi*d))**1.9/3 - d**2/10.)
n=60
x = numpy.linspace(0, 10, 300)
y1 = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc1, noise=0.00))
y2 = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc2, noise=0.00))
x_known = numpy.concatenate([x[:n+1], x[-n:]])
y_known = numpy.concatenate([y1[:n+1], y2[-n:]])
x_unknown = x[n:-n+1]
Ckk = covMat(x_known, x_known, covFunc, noise=0.000001)
Cuu = covMat(x_unknown, x_unknown, covFunc, noise=0.00)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = covMat(x_unknown, x_known, covFunc, noise=0.0)
m = 0 #numpy.mean(y)
covPost = Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T)
y_unknown = numpy.dot(numpy.dot(Cuk,CkkInv),y_known)
fig = plt.figure(figsize=(4.0,2))
sigma = numpy.sqrt(numpy.diag(covPost))
plt.plot(x_unknown, y_unknown, label=u'Prediction')
plt.fill_between(x_unknown.ravel(), y_unknown - sigma, y_unknown + sigma, color = '0.85')
plt.plot(x[:n+1], y1[:n+1],'k-')
plt.plot(x[-n:], y2[-n:],'k-')
plt.vlines([x[n], x[-n]],-3,3,colors='r', linestyles='--', alpha=0.5)
plt.axis([0,10,-3,3])
plt.savefig('Gaussianprocess_gapMean.svg')
fig = plt.figure(figsize=(4.0,2))
for c in 'C1 C4 C2'.split():
y_random = numpy.random.multivariate_normal(x_unknown.ravel()*0, covPost)
plt.plot(x_unknown, y_unknown + y_random, c, label=u'Prediction')
sigma = numpy.sqrt(numpy.diag(covPost))
plt.plot(x[:n+1], y1[:n+1],'k-')
plt.plot(x[-n:], y2[-n:],'k-')
plt.vlines([x[n], x[-n]],-3,3,colors='r', linestyles='--', alpha=0.5)
plt.axis([0,10,-3,3])
plt.savefig('Gaussianprocess_gap.svg')
# Uncertainty animation
numpy.random.seed(1)
t = numpy.arange(0, 1, 0.02)
covFunc = lambda d: numpy.exp(-(3*numpy.sin(d*numpy.pi))**2) # Covariance function
chol = numpy.linalg.cholesky(covMat(t, t, covFunc, noise=1E-5))
r = chol.dot(numpy.random.randn(len(t), len(covPost)))
cov = covPost+1E-5*numpy.identity(len(covPost))
rSmooth = numpy.linalg.cholesky(cov).dot(r.T)
images = []
fig = plt.figure(figsize=(4.0,2))
for ti in [0]+list(range(len(t))):
plt.plot(x_unknown, y_unknown + rSmooth[:,ti], label=u'Prediction',alpha=1)
#plt.fill_between(x_unknown.ravel(), y_unknown - sigma, y_unknown + sigma, color = '0.85')
plt.plot(x[:n+1], y1[:n+1],'k-')
plt.plot(x[-n:], y2[-n:],'k-')
plt.vlines([x[n], x[-n]],-3,3,colors='r', linestyles='--', alpha=0.5)
plt.axis([0,10,-3,3])
plt.xlabel('t')
#plt.tight_layout()
fig.canvas.draw()
s, (width, height) = fig.canvas.print_to_buffer()
images.append(numpy.fromstring(s, numpy.uint8).reshape((height, width, 4)))
fig.clf()
# Save GIF animation
fileOut = 'Gaussianprocess_gapUncertainty.gif'
imageio.mimsave(fileOut, images[1:])
# Optimize GIF size
from pygifsicle import optimize
optimize(fileOut, colors=16)
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Captions
Gaussian process regression: uncertainty of interpolated gap shown by random animation according to posterior covariance function
Items portrayed in this file
depicts
some value
1 December 2019
image/gif
159,918 byte
200 pixel
400 pixel
e0908e47bf343f2c1a72e43651cc14105d2df06b
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 21:37, 8 September 2021 | 400 × 200 (156 KB) | wikimediacommons>Physikinger | Smaller file size |
File usage
The following page uses this file:
