File:Sine of distance from origin.png

From testwiki
Jump to navigation Jump to search
Sine_of_distance_from_origin.png (800 × 589 pixels, file size: 144 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Description

A 3D surface plot of the sine of distance from the origin: .

This represents the displacement for a point source in 2D, with no attenuation due to distance.
Date
Source

Self-Made with Mathematica

 This diagram was created with Mathematica.
Author Inductiveload
Permission
(Reusing this file)
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
     Mathematical Function Plot
Description Sine of the distance from the origin
Equation
Co-ordinate System Cartesian
X Range -2π .. 2π
Y Range -2π .. 2π

Mathematica Code

Please be aware that at the time of uploading (21:24, 13 June 2007 (UTC)), this code may take a significant amount of time to execute on a consumer-level computer.


This uses Chris Hill's antialiasing code to average pixels and produce a less jagged image. The original code can be found here.
\!\(gr = Plot3D[\[IndentingNewLine]Sin[Sqrt[x^2 + 
      y^2]], \[IndentingNewLine]{x, \(-2\)\ Pi, 2  Pi}, \[IndentingNewLine]{
      y, \(-2\)\ Pi, 2  
      Pi}, \[IndentingNewLine]PlotPoints -> 600, \[IndentingNewLine]Mesh -> 
      False, \[IndentingNewLine]BoxRatios -> {4,
             4, 1}, \[IndentingNewLine]Axes -> True, \[IndentingNewLine]Boxed \
-> True, \[IndentingNewLine]AxesLabel -> {"\<x\>", "\<y\>", 
      "\<u\>"}, \[IndentingNewLine]Ticks -> {\[IndentingNewLine]{\
\[IndentingNewLine]{\(-2\) 
      Pi, \(-2\) π, 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{\(-
      Pi\), \(-π\), 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{0, 0, 
      0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{Pi, π, 0.01, {
      AbsoluteThickness[
      4]}}, \[IndentingNewLine]{2  
        Pi, 2  π, 0.01, {AbsoluteThickness[4]}}\[IndentingNewLine]}, \
\[IndentingNewLine]{\[IndentingNewLine]{\(-2\) 
        Pi, \(-2\) π, 0.01, {AbsoluteThickness[
          4]}}, \[IndentingNewLine]{\(-Pi\), \(-π\), 
            0.01, {AbsoluteThickness[
      4]}}, \[IndentingNewLine]{0, 0, 0.01, {
        AbsoluteThickness[4]}}, \[IndentingNewLine]{Pi, π, 0.01, \
{AbsoluteThickness[4]}}, \[IndentingNewLine]{2  Pi, 2  π, 0.01, {
            AbsoluteThickness[
            4]}}\[IndentingNewLine]}, \
\[IndentingNewLine]{\[IndentingNewLine]{\(-1\), \(-1\), 
                  0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{0, 0, 
          0.01, {AbsoluteThickness[
          4]}}, \[IndentingNewLine]{1, 1, 0.01, {
            AbsoluteThickness[4]}}\[IndentingNewLine]}\[IndentingNewLine]}, \
\[IndentingNewLine]TextStyle -> {FontSize -> 
            40}, \[IndentingNewLine]BoxStyle -> {AbsoluteThickness[4]}, \
\[IndentingNewLine]ImageSize -> 200, \[IndentingNewLine]]\[IndentingNewLine]\
\[IndentingNewLine]
  aa[gr_] := Module[{siz, kersiz, ker, dat, as, ave, is,
                   ar}, \[IndentingNewLine]is = ImageSize /. Options[gr, \
ImageSize]; \[IndentingNewLine]ar = AspectRatio /. Options[gr, 
      AspectRatio]; \[IndentingNewLine]If[\(! NumberQ[is]\), is = 288]; \
\[IndentingNewLine]kersiz = 
                      4; \[IndentingNewLine]img = \
ImportString[ExportString[gr, "\<PNG\>", ImageSize -> \((is\ 
      kersiz)\)], 
        "\<PNG\>"]; \[IndentingNewLine]siz = Reverse@\(Dimensions[img[\([1, 
                1]\)]]\)[\([{1, 2}]\)]; \[IndentingNewLine]ker = 
      Table[N[1/
        kersiz\^2], {kersiz}, {kersiz}]; \[IndentingNewLine]dat = N[img[\([
          1, 1]\)]]; \[IndentingNewLine]as = Dimensions[
      dat]; \[IndentingNewLine]ave = 
          Partition[Transpose[\(Flatten[ListConvolve[ker, dat[\([All, 
      All, #]\)]]] &\) /@ Range[as[\([3]\)]]], as[\([2]\)] - kersiz + 
      1]; \[IndentingNewLine]ave = 
      Take[ave, 
        Sequence @@ \((\({1, \(Dimensions[ave]\)[\([#]\)], kersiz} &\) /@
                   Range[Length[Dimensions[
                    ave]] - 1])\)]; \
\[IndentingNewLine]Show[Graphics[Raster[ave, {{0, 0}, siz/
              kersiz}, {0, 255}, ColorFunction -> RGBColor]], 
              PlotRange -> {{0, siz[\([1]\)]/kersiz}, {0, siz[\([2]\)]/
      kersiz}}, ImageSize -> is, 
      AspectRatio -> ar]\[IndentingNewLine]]\[IndentingNewLine]
  finalgraphic = aa[gr]\)

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

13 June 2007

147,802 byte

589 pixel

800 pixel

image/png

9fe24561235d8bb98e3e9f4c229da596ce1c32c5

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current22:19, 13 June 2007Thumbnail for version as of 22:19, 13 June 2007800 × 589 (144 KB)wikimediacommons>Inductiveload{{Information |Description=A 3D surface plot of <math>u=\sin \left( \sqrt{x^2 + y^2} \right). This represents the displacement for a point source in 2D, with no attenuation due to distance. |Source=Self-Made with Mathematica {{Mathemetica}} |Date=13/06/2