A-level Mathematics/CIE/Pure Mathematics 2/Logarithmic and Exponential Functions

From testwiki
Jump to navigation Jump to search

Logarithms and Exponents

A logarithm is the inverse function of an exponent.

e.g. The inverse of the function f(x)=3x is f1(x)=log3x.

In general, y=bxx=logby, given that b>0.

Laws of Logarithms

The laws of logarithms can be derived from the laws of exponentiation:

xa+b=xa×xbloga+logb=logabxab=xa÷xblogalogb=loga/b(xa)b=xablogab=bloga

These laws apply to logarithms of any given base

Natural Logarithms

The natural logarithm is a logarithm with base e, where e is a constant such that the function ex is its own derivative.

The natural logarithm has a special symbol: lnx

The graph y=ekx exhibits exponential growth when k>0 and exponential decay when k<0. The inverse graph is y=1klnx. Here is an interactive graph which shows the two functions as inverses of one another.

Solving Logarithmic and Exponential Equations

An exponential equation is an equation in which one or more of the terms is an exponential function. e.g. 5x=2x+2. Exponential equations can be solved with logarithms.

e.g. Solve 3x+1=42x1

3x+1=42x1(x+1)ln3=(2x1)ln4xln3+ln3=2xln4ln4ln3+ln4=x(2ln4ln3)x=ln3+ln42ln4ln3x1.4844

A logarithmic equation is an equation wherein one or more of the terms is a logarithm.

e.g. Solve lgx+lg(x+2)=2 [note 1]

lgx+lg(x+2)=2lg(x(x+2))=2x(x+2)=100x2+2x=100(x+1)2=101x+1=101x=1±101

Converting Relationships to a Linear Form

In maths and science, it is easier to deal with linear relationships than non-linear relationships. Logarithms can be used to convert some non-linear relationships into linear relationships.

Exponential Relationships

An exponential relationship is of the form y=abx. If we take the natural logarithm of both sides, we get lny=lna+xlnb. We now have a linear relationship between lny and x.

e.g. The following data is related with an exponential relationship. Determine this exponential relationship, then convert it to linear form.

x y
0 5
2 45
4 405

Exponential relationship y=abx5=ab0=a(1)a=5y=5bx45=5b29=b2b=3y=5(3x)

Now convert it to linear form by taking the natural logarithm of both sides:

y=5(3x)lny=ln5+xln3

Power Relationships

A power relationship is of the form y=axb. If we take the natural logarithm of both sides, we get lny=lna+blnx. This is a linear relationship between lny and lnx.

e.g. The amount of time that a planet takes to travel around the sun (its orbital period) and its distance from the sun are related by a power law. Use the following data[1] to deduce this power law:

Planet Distance from Sun /106 km Orbital Period /days
Earth 149.6 365.2
Mars 227.9 687.0
Jupiter 778.6 4331

Power lawT=aRbUse Earth data365.2=a(149.6b)ln365.2=lna+bln149.6Use Mars data687.0=a(227.9b)ln687.0=lna+bln227.9ln687.0ln365.2=lnalna+bln227.9bln149.6ln687.0365.2=0+b(ln227.9149.6)b=ln687.0365.2ln227.9149.61.5011ln365.2=lna+1.5011ln149.6lna=ln365.2ln1839.9lna=ln0.1985a=0.1985T=0.1985R1.5011

References
Notes
  1. lg is another way of writing log10

Template:Chapnav

Template:BookCat