A-level Mathematics/OCR/C1/Appendix A: Formulae

From testwiki
Jump to navigation Jump to search

By the end of this module you will be expected to have learned the following formulae:

The Laws of Indices

  1. xaxb=xa+b
  2. xaxb=xab
  3. xn=1xn
  4. (xa)b=xab
  5. (xy)n=xnyn
  6. (xy)n=xnyn
  7. xab=xab
  8. x0=1
  9. x1=x

The Laws of Surds

  1. xy=x×y
  2. xy=xy
  3. ab+c=ab+c×bcbc=a(bc)b2c

Polynomials

Parabolas

If f(x) is in the form a(x+b)2+c

  1. -b is the axis of symmetry
  2. c is the maximum or minimum y value

Axis of Symmetry = b2a

Completing the Square

ax2+bx+c=0 becomes a(x+b2a)2b24a+c

The Quadratic Formula

  • The solutions of the quadratic ax2+bx+c=0 are: x=b±b24ac2a
  • The discriminant of the quadratic ax2+bx+c=0 is b24ac

Errors

  1. Absolute error=value obtainedtrue value
  2. Relative error=absolute errortrue value
  3. Percentage error=relative error×100

Coordinate Geometry

Gradient of a line

m=y2y1x2x1

Point-Gradient Form

The equation of a line passing through the point (x1,y1) and having a slope m is yy1=m(xx1).

Perpendicular lines

Lines are perpendicular if m1×m2=1

Distance between two points

d=(x2x1)2+(y2y1)2

Mid-point of a line

(x1+x22;y1+y22)

General Circle Formulae

Area=πr2

Circumference=2πr

Equation of a Circle

(xh)2+(yk)2=r2, where (h,k) is the center and r is the radius.

Differentiation

Differentiation Rules

  1. Derivative of a constant function:

dydx(c)=0

  1. The Power Rule:

dydx(xn)=nxn1

  1. The Constant Multiple Rule:

dydxcf(x)=cdydxf(x)

  1. The Sum Rule:

dydx[f(x)+g(x)]=dydxf(x)+dydxg(x)

  1. The Difference Rule:

dydx[f(x)g(x)]=dydxf(x)dydxg(x)

Rules of Stationary Points

  • If f(c)=0 and f(c)<0, then c is a local maximum point of f(x). The graph of f(x) will be concave down on the interval.
  • If f(c)=0 and f(c)>0, then c is a local minimum point of f(x). The graph of f(x) will be concave up on the interval.
  • If f(c)=0 and f(c)=0 and f(c)0, then c is a local inflection point of f(x).

Template:A-level Mathematics/C1/TOC