A-level Mathematics/OCR/C2/Integration/Solutions

From testwiki
Jump to navigation Jump to search

Worked Solutions

1a)

2x5dx
Using our rule: That dydx=xndx is equal to y=x(n+1)(n+1)+C
We get:
y=2x66+C

b)

7x6+2x3x2dx
Again using our rule, we would get:
y=x7+x42x33+C

2a)

x+5dx given that the point (0,3) lies on the curve.
Using our rule, the integral becomes
y=x22+5x+C
Now we can sub in our points (0,3), So that:
3=022+5(0)+C
Therefore C = 3

b)

3x2+7x+0.1dx
Evaulating this we get: x3+7x22+0.1x+C
Given (2,2), subing these points in:
2=23+7(22)2+0.2+C
2=8+14+0.2+C
C=20.2

3a)

02x+1dx
Evaluating this we get:
x22+x02
Substituting in values we get:
(222+2)(022+0)
=4

b)

34.717x13+1dx
Evaluating this we get:
3x4328+x34.7
(3(4.7)4328+4.7)(3(3)43283)
8.08

4)

The question is simply to evaluate this definite integral:
20(y=x412x3+3x2)dx=(15x518x4+x3)20=(15*2518*2423)=3.6

[[Template:BOOKCATEGORY/OCR/C2|Integration/Solutions]]