Abstract Algebra/Rings, ideals, ring homomorphisms
Jump to navigation
Jump to search
Basic definitions
Examples 10.2:
- The whole numbers with respect to usual addition and multiplication are a ring.
- Every field is a ring.
- If is a ring, then all polynomials over form a ring. This example will be explained later in the section on polynomial rings.
We'll now show an important property of the set of all ideals of a given ring, namely that it's inductive. This means:
With this definition, we observe:
Proof:
If
is an ascending chain of ideals, we set
and claim that . Indeed, if , find such that and . Then set , so that since . Similarly, if and , pick such that , whence since .
Residue class rings
Proof:
First, we check that is an equivalence relation.
- Reflexiveness: since is an additive subgroup.
- Symmetry: since inverses are in the subgroup.
- Transitivity: Let and . Then , since a subgroup is closed under the group operation.
Then we check that addition and multiplication are well-defined. Let and . Then
- for certain .
Furthermore,
for these same ; this is in by closedness by left and right multiplication.
The ring axioms directly carry over from the old ring .