Accelerator Physics/Coordinate Systems

From testwiki
Jump to navigation Jump to search

 Cartesian coordinates

dV=dxdydz

ψ=(ψx,ψy,ψz)

v=vxx+vyy+vzz, sometimes denoted as v

v=(vzyvyz,vxzvzx,vyxvxy)

Δψ=2ψxx2+2ψyy2+2ψzz2

Transformation to other coordinates

The general transformation relations to a new coordinate system (u1,u2,u3) are,

dV=du1U1du2U2du3U3

ψ=(U1ψu1,U2ψu2,U3ψu3)

v=U1U2U3(u1vu1U2U3+u2vu2U1U3+u3vu3U1U2)×v=(U2U3(u2vu3U3u3vu2U2),U1U3(u3vu1U1u1vu3U3),U1U2(u1vu2U2u2vu1U1))Δψ=U1U2U3[u1(U1U2U3ψu1)+u2(U2U1U3ψu2)+u3(U3U1U2ψu3)],

where

U11=(xu1)2+(yu1)2+(zu1)2,

U21=(xu2)2+(yu2)2+(zu2)2,

U31=(xu3)2+(yu3)2+(zu3)2,

vu1=vxU1xu1+vyU1yu1+vzU1zu1

vu2=vxU2xu2+vyU2yu2+vzU2zu2

vu3=vxU3xu3+vyU3yu3+vzU3zu3

Cylindrical Coordinates

The cylindrical coordinates (u1=r,u2=φ,u3=z) are related to the cartesian coordinates by

(x,y,z)=(rcosφ,rsinφ,z)

dV=r drdφdz

ψ=(ψr,1rψφ,ψz)

v=1rr(rvr)+1rvφφ+vzz

×v=(1rvzφvϕvz,vrzvzr,1rr(rvϕ)1rvrϕ)

Δψ=2ψr2+1rψr+1r22ψφ2+2ψz2

Spherical Polar Coordinates

Spherical coordinates in most of the physics conventions. Notice that this is different than the mathematics convention in which θ and φ are swapped compared to the figure shown.

The spherical polar coordinates (u1=r,u2=θ,u3=φ), or simply the spherical coordinates, are particularly useful when the system in R3 has a spherical symmetry, such as the motion of a particle under the influence of central forces.

(x,y,z)=(rsinθcosφ,rsinθsinφ,rcosθ)

U11=1, U21=r, U31=rsinθ

dV=r2sinθ drdφdθ

ψ=(ψr,1rψθ,1rsinθψφ)

v=1r2r(r2vr)+1rsinθθ(vθsinθ)+1rsinθvφφ

×v=(1rsinθ(θ(sinθvφ)vθφ),1rsinθ(vrφsinθr(rvφ)),1r(r(rvθ)vrθ))

Δψ=1r2r(r2ψr)+1r2sinθθ(sinθψθ)+1r2sin2θ2ψφ2

Template:BookCat