Calculus/Integration techniques/Integration by Complexifying

From testwiki
Jump to navigation Jump to search

Template:Calculus/Top Nav

This technique requires an understanding and recognition of complex numbers. Specifically Euler's formula:

cos(θ)+isin(θ)=eθi

Recognize, for example, that the real portion:

Re{eθi}=cos(θ)

Given an integral of the general form:

excos(2x)dx

We can complexify it:

Re{ex(cos(2x)+isin(2x))}dx
Re{ex(e2xi)}dx

With basic rules of exponents:

Re{ex+2ix}dx

It can be proven that the "real portion" operator can be moved outside the integral:

Re{ex(1+2i)dx}

The integral easily evaluates:

Re{ex(1+2i)1+2i}

Multiplying and dividing by 12i :

Re{12i5ex(1+2i)}

Which can be rewritten as:

Re{12i5exe2ix}

Applying Euler's forumula:

Re{12i5ex(cos(2x)+isin(2x))}

Expanding:

Re{ex5(cos(2x)+2sin(2x))+iex5(sin(2x)2cos(2x))}

Taking the Real part of this expression:

ex5(cos(2x)+2sin(2x))

So:

excos(2x)dx=ex5(cos(2x)+2sin(2x))+C

Template:BookCat