Calculus/Integration techniques/Trigonometric Integrals

From testwiki
Jump to navigation Jump to search

Template:Calculus/Top Nav

When the integrand is primarily or exclusively based on trigonometric functions, the following techniques are useful.

Powers of Sine and Cosine

We will give a general method to solve generally integrands of the form cosm(x)sinn(x) . First let us work through an example.

cos3(x)sin2(x)dx

Notice that the integrand contains an odd power of cos. So rewrite it as

cos2(x)sin2(x)cos(x)dx

We can solve this by making the substitution u=sin(x) so du=cos(x)dx . Then we can write the whole integrand in terms of u by using the identity

cos2(x)=1sin2(x)=1u2 .

So

cos3(x)sin2(x)dx =cos2(x)sin2(x)cos(x)dx
=(1u2)u2du
=u2duu4du
=u33+u55+C
=sin3(x)3sin5(x)5+C

This method works whenever there is an odd power of sine or cosine.

To evaluate cosm(x)sinn(x)dx when either m or n is odd.

  • If m is odd substitute u=sin(x) and use the identity cos2(x)=1sin2(x)=1u2 .
  • If n is odd substitute u=cos(x) and use the identity sin2(x)=1cos2(x)=1u2 .

Example

Find 0π2cos40(x)sin3(x)dx .

As there is an odd power of sin we let u=cos(x) so du=sin(x)dx . Notice that when x=0 we have u=cos(0)=1 and when x=π2 we have u=cos(π2)=0 .

0π2cos40(x)sin3(x)dx =0π2cos40(x)sin2(x)sin(x)dx
=10u40(1u2)du
=01u40(2u2)du
=05(u40u42)du
=(u4141u4343)|01
=141143

When both m and n are even, things get a little more complicated.

To evaluate cosm(x)sinn(x)dx when both m and n are even.


Use the identities sin2(x)=1cos(2x)2 and cos2(x)=1+cos(2x)2 .

Example

Find sin2(x)cos4(x)dx .

As sin2(x)=1cos(2x)2 and cos2(x)=1+cos(2x)2 we have

sin2(x)cos4(x)dx=(1cos(2x)2)(1+cos(2x)2)2dx

and expanding, the integrand becomes

18(1cos2(2x)+cos(2x)cos3(2x))dx

Using the multiple angle identities

I =18(1dxcos2(2x)dx+cos(2x)dxcos3(2x)dx)
=18(x12(1+cos(4x))dx+sin(2x)2cos2(2x)cos(2x)dx)
TODO: CORRECT FORMULA=1164(x+sin(2x)+cos(4x)dx2(1sin2(2x))cos(2x)dx)

then we obtain on evaluating

I=x16sin(4x)64+sin3(2x)48+C

Powers of Tan and Secant

To evaluate tanm(x)secn(x)dx .

  1. If n is even and n2 then substitute u=tan(x) and use the identity sec2(x)=1+tan2(x) .
  2. If n and m are both odd then substitute u=sec(x) and use the identity tan2(x)=sec2(x)1 .
  3. If n is odd and m is even then use the identity tan2(x)=sec2(x)1 and apply a reduction formula to integrate secj(x)dx , using the examples below to integrate when j=1,2 .

Example 1

Find sec2(x)dx .

There is an even power of sec(x) . Substituting u=tan(x) gives du=sec2(x)dx so

sec2(x)dx=du=u+C=tan(x)+C.


Example 2

Find tan(x)dx .

Let u=cos(x) so du=sin(x)dx . Then

tan(x)dx =sin(x)cos(x)dx
=duu
=ln|u|+C
=ln|cos(x)|+C
=ln|sec(x)|+C


Example 3

Find sec(x)dx .

The trick to do this is to multiply and divide by the same thing like this:

sec(x)dx =sec(x)sec(x)+tan(x)sec(x)+tan(x)dx
=sec2(x)+sec(x)tan(x)sec(x)+tan(x)dx

Making the substitution u=sec(x)+tan(x) so du=sec(x)tan(x)+sec2(x)dx ,

sec(x)dx =duu
=ln|u|+C
ln|sec(x)+tan(x)|+C

More trigonometric combinations

For the integrals sin(nx)cos(mx)dx or sin(nx)sin(mx)dx or cos(nx)cos(mx)dx use the identities

  • sin(a)cos(b)=sin(a+b)+sin(ab)2
  • sin(a)sin(b)=cos(ab)cos(a+b)2
  • cos(a)cos(b)=cos(ab)+cos(a+b)2

Example 1

Find sin(3x)cos(5x)dx .

We can use the fact that sin(a)cos(b)=sin(a+b)+sin(ab)2 , so

sin(3x)cos(5x)=sin(8x)+sin(2x)2

Now use the oddness property of sin(x) to simplify

sin(3x)cos(5x)=sin(8x)sin(2x)2

And now we can integrate

sin(3x)cos(5x)dx =(sin(8x)sin(2x)2)dx
=cos(2x)4cos(8x)16+C

Example 2

Find:sin(x)sin(2x)dx .

Using the identities

sin(x)sin(2x)=cos(x)cos(3x)2=cos(x)cos(3x)2

Then

sin(x)sin(2x)dx =12(cos(x)cos(3x))dx
=sin(x)2sin(3x)6+C

Template:Calculus/Top Nav Template:Calculus/TOC