Digital Signal Processing/Transforms

From testwiki
Jump to navigation Jump to search

Template:DSP Page

This page lists some of the transforms from the book, explains their uses, and lists some transform pairs of common functions.

Continuous-Time Fourier Transform (CTFT)

Template:Eqn

(ω)=f(t)ejωtdt

CTFT Table

  Time Domain Frequency Domain
x(t)=1{X(ω)} X(ω)={x(t)}
1 X(jω)=x(t)ejωtdt x(t)=12πX(ω)ejωtdω
2 1 2πδ(ω)
3 0.5+u(t) 1jω
4 δ(t) 1
5 δ(tc) ejωc
6 u(t) πδ(ω)+1jω
7 ebtu(t)(b>0) 1jω+b
8 cosω0t π[δ(ω+ω0)+δ(ωω0)]
9 cos(ω0t+θ) π[ejθδ(ω+ω0)+ejθδ(ωω0)]
10 sinω0t jπ[δ(ω+ω0)δ(ωω0)]
11 sin(ω0t+θ) jπ[ejθδ(ω+ω0)ejθδ(ωω0)]
12 rect(tτ) τsinc(τω2π)
13 τsinc(τt2π) 2πrect(ωτ)
14 (12|t|τ)rect(tτ) τ2sinc2(τω4π)
15 τ2sinc2(τt4π) 2π(12|ω|τ)rect(ωτ)
16 ea|t|,{a}>0 2aa2+ω2
Notes:
  1. sinc(x)=sin(πx)/(πx)
  2. rect(tτ) is the rectangular pulse function of width τ
  3. u(t) is the Heaviside step function
  4. δ(t) is the Dirac delta function
Template:Navbar

Discrete-Time Fourier Transform (DTFT)

DTFT Table

Time domain
x[n] where n
Frequency domain
X(ejω) where ω
Remarks
12πππX(ejω)ejωndω n=x[n]ejωn Definition
x[n]={1,|n|M0,otherwise sin(ω(2M+12))sin(ω2)
αnu[n] 11αejω
δ[n] 1 Here δ[n] represents the delta function
which is 1 if n=0 and zero otherwise.
u[n]={0for n<01for n0 11ejω+πp=δ(ω2πp)
1πnsin(Wn),0<Wπ X(ejω)={1,|ω|W0,W<|ω|π X(ejω) is 2π periodic
(n+1)αnu[n] 1(1αejω)2

DTFT Properties

Property Time domain
x[n]
Frequency domain
X(ω)
Remarks
Linearity ax[n]+by[n] aX(eiω)+bY(eiω)
Shift in time x[nk] X(eiω)eiωk integer k
Shift in frequency x[n]eian X(ei(ωa)) real number a
Time reversal x[n] X(eiω)
Time conjugation x[n]* X(eiω)*
Time reversal & conjugation x[n]* X(eiω)*
Derivative in frequency nix[n] dX(eiω)dω
Integral in frequency inx[n] πωX(eiϑ)dϑ
Convolve in time x[n]*y[n] X(eiω)Y(eiω)
Multiply in time x[n]y[n] 12πX(eiω)*Y(eiω)
Correlation ρxy[n]=x[n]**y[n] Rxy(ω)=X(eiω)*Y(eiω)

Where:

  • * is the convolution between two signals
  • x[n]* is the complex conjugate of the function x[n]
  • ρxy[n] represents the correlation between x[n] and y[n].

Discrete Fourier Transform (DFT)

DFT Table

Time-Domain
x[n]
Frequency Domain
X[k]
Notes
xn1Nk=0N1Xkei2πkn/N Xkn=0N1xnei2πkn/N DFT Definition
xnei2πkn/N Xnk Shift theorem
xnk Xkei2πkn/N
xn𝐑 Xk=XNk* Real DFT
an 1aN1aei2πk/N  
(N1n) (1+ei2πk/N)N1  

Z-Transform

Z-Transform Table

Here:

  • u[n]=1 for n>=0, u[n]=0 for n<0
  • δ[n]=1 for n=0, δ[n]=0 otherwise
Signal, x[n] Z-transform, X(z) ROC
1 δ[n] 1 all z
2 δ[nn0] zn0 z0
3 u[n] 11z1 |z|>1
4 u[n1] 11z1 |z|<1
5 nu[n] z1(1z1)2 |z|>1
6 nu[n1] z1(1z1)2 |z|<1
7 n2u[n] z1(1+z1)(1z1)3 |z|>1
8 n2u[n1] z1(1+z1)(1z1)3 |z|<1
9 n3u[n] z1(1+4z1+z2)(1z1)4 |z|>1
10 n3u[n1] z1(1+4z1+z2)(1z1)4 |z|<1
11 anu[n] 11az1 |z|>|a|
12 anu[n1] 11az1 |z|<|a|
13 nanu[n] az1(1az1)2 |z|>|a|
14 nanu[n1] az1(1az1)2 |z|<|a|
15 n2anu[n] az1(1+az1)(1az1)3 |z|>|a|
16 n2anu[n1] az1(1+az1)(1az1)3 |z|<|a|
17 cos(ω0n)u[n] 1z1cos(ω0)12z1cos(ω0)+z2 |z|>1
18 sin(ω0n)u[n] z1sin(ω0)12z1cos(ω0)+z2 |z|>1
19 ancos(ω0n)u[n] 1az1cos(ω0)12az1cos(ω0)+a2z2 |z|>|a|
20 ansin(ω0n)u[n] az1sin(ω0)12az1cos(ω0)+a2z2 |z|>|a|

Template:BookCat

Bilinear Transform

see [1]

Discrete Cosine Transform (DCT)

Haar Transform