Electronics Communication/Signal Processing/Signal Transformation/Fourier Transform

From testwiki
Jump to navigation Jump to search

Fourier Transform

Fourier Transform is a process to transfor function in Frequency domain to time domain

F(jω)={f(t)}=f(t)ejωtdt

Inverse Fourier Transform

1{F(jω)}=f(t)=12πF(jω)ejωtdω

Table of Fourier Transforms

This table contains some of the most commonly encountered Fourier transforms.

Template:Center/top

  Time Domain Frequency Domain
x(t)=1{X(ω)} X(ω)={x(t)}
1 X(jω)=x(t)ejωtdt x(t)=12πX(ω)ejωtdω
2 1 2πδ(ω)
3 0.5+u(t) 1jω
4 δ(t) 1
5 δ(tc) ejωc
6 u(t) πδ(ω)+1jω
7 ebtu(t)(b>0) 1jω+b
8 cosω0t π[δ(ω+ω0)+δ(ωω0)]
9 cos(ω0t+θ) π[ejθδ(ω+ω0)+ejθδ(ωω0)]
10 sinω0t jπ[δ(ω+ω0)δ(ωω0)]
11 sin(ω0t+θ) jπ[ejθδ(ω+ω0)ejθδ(ωω0)]
12 rect(tτ) τsinc(τω2π)
13 τsinc(τt2π) 2πrect(ωτ)
14 (12|t|τ)rect(tτ) τ2sinc2(τω4π)
15 τ2sinc2(τt4π) 2π(12|ω|τ)rect(ωτ)
16 ea|t|,{a}>0 2aa2+ω2
Notes:
  1. sinc(x)=sin(πx)/(πx)
  2. rect(tτ) is the rectangular pulse function of width τ
  3. u(t) is the Heaviside step function
  4. δ(t) is the Dirac delta function
Template:Navbar

Template:Center/end

Template:BookCat