Electronics Handbook/Circuits/RLC Series

From testwiki
Jump to navigation Jump to search

RLC Series

Circuit Analysis

Circuit's Impedance

Z=ZR+ZL+ZC
Z=R+jωL+1jωC
Z=1XC(jω2+jωRL+1LC)

Natural Response

LdIdt+IR+1CIdt=0
dIdt+IRL+1LC=0
d2Idt2+RLdIdt+1LC=0
s2+RLs+1LC=0
s=α ± α2β2t
s=α±λt
α=R2L
β=1LC
λ=α2β2t
  • λ=0.α2=β2 . There is only one real root,
s = -αt
(R2L)2 = (1LC)2
R=LC
I=Ae(tT)


  • α2>β2 , There are two real roots,
s=α ± α2β2
(R2L)2 = (1LC)2
R>LC
I=eαt[eλt+eλt]
I=ACosλt
A=eαt2
  • α2<β2 , There are two complex roots,
s=α ± α2β2
(R2L)2 = (1LC)2
R>LC
I=eαt[ejλt+ejλt]
I=ASinλt
A=eαt2

Current change with time depends on the value of R L and C

R=LC . Dòng điện giảm dần theo hàm số mủ của e
R>LC . Dòng điện giảm đến một giá trị âm rồi tăng đến một giá trị dương
R=LC . Mạch điện có có Dòng Điện của Sóng Sin giảm dần theo theo thời gian

Resonance Response

At resonance ZLZC=0.VC+VL=0

  • ZLZC=0
ZL=ZC .
ωL=1ωC
ω=1LC

Analyze the circuit at

ω=0.I=0 . Capacitor opens circuit
ω=00.I=0 . Inductor opens circuit
ω=1LC.I=VR . ZL=ZR.Z=ZR+ZL+ZC=ZR=R

At resonance, series RLC is capable of select a bandwidth of frequencies where voltage is stable does not change with frequencies. Therefore, can be used as Tuned - Resonance Band Pas Selected Filter

Summary

  • The natural Response of the RLC series is a second order differential equation of current
d2Idt+RLdIdt+1LC

Depends on the value of Resistance the equation has

One Real Root Two Real Roots Two Complex Roots
One real root

R=LC
I=eαt
Two real roots
R>LC
I=eα[eλt+eλt]
I=ACosλt
A=eαt2

R<LC

I=eα[ejλt+ejλt]<br><math>I=ASinλt
A=eαt2

  • At Resonance when all the frequency dependent components cancel out RLC series behaves like Tuned Resonance Selected Band Pass Filter

Template:BookCat