Engineering Acoustics/Time-Domain Solutions

From testwiki
Jump to navigation Jump to search

Template:Engineering Acoustics

d'Alembert Solutions

In 1747, Jean Le Rond d'Alembert published a solution to the one-dimensional wave equation.

The general solution, now known as the d'Alembert method, can be found by introducing two new variables:

ξ=ctx and η=ct+x


and then applying the chain rule to the general form of the wave equation.

From this, the solution can be written in the form:


y(ξ,η)=f(ξ)+g(η)=f(x+ct)+g(xct)

where f and g are arbitrary functions, that represent two waves traveling in opposing directions.

A more detailed look into the proof of the d'Alembert solution can be found here.

Example of Time Domain Solution

If f(ct-x) is plotted vs. x for two instants in time, the two waves are the same shape but the second displaced by a distance of c(t2-t1) to the right.

The two arbitrary functions could be determined from initial conditions or boundary values.

Back to Main page