Engineering Handbook/Calculus/Integration/exponential functions

From testwiki
Jump to navigation Jump to search
exdx=ex
ecxdx=1cecx
acxdx=1clnaacx for a>0, a1
xecxdx=ecxc2(cx1)
x2ecxdx=ecx(x2c2xc2+2c3)
xnecxdx=1cxnecxncxn1ecxdx=(c)necxc
ecxxdx=ln|x|+n=1(cx)nnn!
ecxxndx=1n1(ecxxn1+cecxxn1dx)(for n1)
ecxlnxdx=1cecxln|x|Ei(cx)
ecxsinbxdx=ecxc2+b2(csinbxbcosbx)
ecxcosbxdx=ecxc2+b2(ccosbx+bsinbx)
ecxsinnxdx=ecxsinn1xc2+n2(csinxncosx)+n(n1)c2+n2ecxsinn2xdx
ecxcosnxdx=ecxcosn1xc2+n2(ccosx+nsinx)+n(n1)c2+n2ecxcosn2xdx
xecx2dx=12cecx2
ecx2dx=π4cerf(cx) (erf is the Error function)
xecx2dx=12cecx2
1σ2πe(xμ)2/2σ2dx=12(erfx+μσ2)
ex2dx=ex2(j=0n1c2j1x2j+1)+(2n1)c2n2ex2x2ndxvalid for n>0,
where c2j=135(2j1)2j+1=(2j)!j!22j+1 .
xxxmdx=n=0m(1)n(n+1)n1n!Γ(n+1,lnx)+n=m+1(1)namnΓ(n+1,lnx)(for x>0)
where amn={1if n=0,1n!if m=1,1nj=1njam,njam1,j1otherwise
and Γ(x,y) is the Gamma Function
1aeλx+bdx=xb1bλln(aeλx+b) when b0, λ0, and aeλx+b>0.
e2λxaeλx+bdx=1a2λ[aeλx+bbln(aeλx+b)] when a0, λ0, and aeλx+b>0.

Definite integrals

01exlna+(1x)lnbdx=01(ab)xbdx=01axb1xdx=ablnalnb for a>0, b>0, ab, which is the logarithmic mean
0eaxdx=1a(a<0)
0eax2dx=12πa(a>0) (the Gaussian integral)
eax2dx=πa(a>0)
eax2e2bxdx=πaeb2a(a>0) (see Integral of a Gaussian function)
xea(xb)2dx=bπa
x2eax2dx=12πa3(a>0)
0xneax2dx={12Γ(n+12)/an+12(n>1,a>0)(2k1)!!2k+1akπa(n=2k,kinteger,a>0)k!2ak+1(n=2k+1,kinteger,a>0) (!! is the double factorial)
0xneaxdx={Γ(n+1)an+1(n>1,a>0)n!an+1(n=0,1,2,,a>0)
0eaxsinbxdx=ba2+b2(a>0)
0eaxcosbxdx=aa2+b2(a>0)
0xeaxsinbxdx=2ab(a2+b2)2(a>0)
0xeaxcosbxdx=a2b2(a2+b2)2(a>0)
02πexcosθdθ=2πI0(x) (I0 is the modified Bessel function of the first kind)
02πexcosθ+ysinθdθ=2πI0(x2+y2)

Template:BookCat