Engineering Handbook/Mathematics/Z Transformation

From testwiki
Jump to navigation Jump to search

Z Transformation Properties

Time domain Z-domain ROC
Notation x[n]=𝒵1{X(z)} X(z)=𝒵{x[n]} ROC: r2<|z|<r1 
Linearity a1x1[n]+a2x2[n]  a1X1(z)+a2X2(z)  At least the intersection of ROC1 and ROC2
Time shifting x[nk]  zkX(z)  ROC, except z=0  if k>0 and z= if k<0 
Scaling in the z-domain anx[n]  X(a1z)  |a|r2<|z|<|a|r1 
Time reversal x[n]  X(z1)  1r2<|z|<1r1 
Conjugation x*[n]  X*(z*)  ROC
Real part Re{x[n]}  12[X(z)+X*(z*)] ROC
Imaginary part Im{x[n]}  12j[X(z)X*(z*)] ROC
Differentiation nx[n]  zdX(z)dz ROC
Convolution x1[n]*x2[n]  X1(z)X2(z)  At least the intersection of ROC1 and ROC2
Correlation rx1,x2(l)=x1[l]*x2[l]  Rx1,x2(z)=X1(z)X2(z1)  At least the intersection of ROC of X1(z) and X2(z1)
Multiplication x1[n]x2[n]  1j2πCX1(v)X2(zv)v1dv  At least r1lr2l<|z|<r1ur2u 
Parseval's relation x1[n]x2*[n]  1j2πCX1(v)X2*(1v*)v1dv 
  • Initial value theorem
x[0]=limzX(z) , If x[n] causal
  • Final value theorem
x[]=limz1(z1)X(z) , Only if poles of (z1)X(z)  are inside unit circle

Z Transformation of Functions

Here:

  • u[n]=1 for n>=0, u[n]=0 for n<0
  • δ[n]=1 for n=0, δ[n]=0 otherwise
Signal, x[n] Z-transform, X(z) ROC
1 δ[n] 1 all z
2 δ[nn0] zn0 z0
3 u[n] 11z1 |z|>1
4 u[n1] 11z1 |z|<1
5 nu[n] z1(1z1)2 |z|>1
6 nu[n1] z1(1z1)2 |z|<1
7 n2u[n] z1(1+z1)(1z1)3 |z|>1
8 n2u[n1] z1(1+z1)(1z1)3 |z|<1
9 n3u[n] z1(1+4z1+z2)(1z1)4 |z|>1
10 n3u[n1] z1(1+4z1+z2)(1z1)4 |z|<1
11 anu[n] 11az1 |z|>|a|
12 anu[n1] 11az1 |z|<|a|
13 nanu[n] az1(1az1)2 |z|>|a|
14 nanu[n1] az1(1az1)2 |z|<|a|
15 n2anu[n] az1(1+az1)(1az1)3 |z|>|a|
16 n2anu[n1] az1(1+az1)(1az1)3 |z|<|a|
17 cos(ω0n)u[n] 1z1cos(ω0)12z1cos(ω0)+z2 |z|>1
18 sin(ω0n)u[n] z1sin(ω0)12z1cos(ω0)+z2 |z|>1
19 ancos(ω0n)u[n] 1az1cos(ω0)12az1cos(ω0)+a2z2 |z|>|a|
20 ansin(ω0n)u[n] az1sin(ω0)12az1cos(ω0)+a2z2 |z|>|a|

Template:BookCat