Engineering Tables/Fourier Transform Table 2

From testwiki
Jump to navigation Jump to search

Template:BookCat

Signal Fourier transform
unitary, angular frequency
Fourier transform
unitary, ordinary frequency
Remarks
g(t)

12πG(ω)eiωtdω
G(ω)

12πg(t)eiωtdt
G(f)

g(t)ei2πftdt
10 rect(at) 12πa2sinc(ω2πa) 1|a|sinc(fa) The rectangular pulse and the normalized sinc function
11 sinc(at) 12πa2rect(ω2πa) 1|a|rect(fa) Dual of rule 10. The rectangular function is an idealized low-pass filter, and the sinc function is the non-causal impulse response of such a filter.
12 sinc2(at) 12πa2tri(ω2πa) 1|a|tri(fa) tri is the triangular function
13 tri(at) 12πa2sinc2(ω2πa) 1|a|sinc2(fa) Dual of rule 12.
14 eαt2 12αeω24α παe(πf)2α Shows that the Gaussian function exp(αt2) is its own Fourier transform. For this to be integrable we must have Re(α)>0.
eiat2=eαt2|α=ia 12aei(ω24aπ4) πaei(π2f2aπ4) common in optics
cos(at2) 12acos(ω24aπ4) πacos(π2f2aπ4)
sin(at2) 12asin(ω24aπ4) πasin(π2f2aπ4)
ea|t| 2πaa2+ω2 2aa2+4π2f2 a>0
1|t| 1|ω| 1|f| the transform is the function itself
J0(t) 2πrect(ω2)1ω2 2rect(πf)14π2f2 J0(t) is the Bessel function of first kind of order 0, rect is the rectangular function
Jn(t) 2π(i)nTn(ω)rect(ω2)1ω2 2(i)nTn(2πf)rect(πf)14π2f2 it's the generalization of the previous transform; Tn (t) is the Chebyshev polynomial of the first kind.
Jn(t)t 2πin(i)nUn1(ω)

   1ω2rect(ω2)

2in(i)nUn1(2πf)

   14π2f2rect(πf)

Un (t) is the Chebyshev polynomial of the second kind