Fundamentals of Transportation/Route Choice/Solution

From testwiki
Jump to navigation Jump to search
TProblem
TProblem
Problem:

Given a flow of six (6) units from origin “o” to destination “r”. Flow on each route ab is designated with Qab in the Time Function. Apply Wardrop's Network Equilibrium Principle (Users Equalize Travel Times on all used routes)

A. What is the flow and travel time on each link? (complete the table below) for Network A

Link Attributes
Link Link Performance Function Flow Time
o-p Cop=5*Qop
p-r Cpr=25+Qpr
o-q Coq=20+2*Qoq
q-r Cqr=5*Qqr

B. What is the system optimal assignment?

C. What is the Price of Anarchy?

Example
Example
Solution:

Part A

What is the flow and travel time on each link? Complete the table below for Network A:

Link Attributes
Link Link Performance Function Flow Time
o-p Cop=5*Qop
p-r Cpr=25+Qpr
o-q Coq=20+2*Qoq
q-r Cqr=5*Qqr

These four links are really 2 links O-P-R and O-Q-R, because by conservation of flow Qop = Qpr and Qoq = Qqr.

Link Attributes
Link Link Performance Function Flow Time
o-p-r Copr=25+6*Qopr
o-q-r Coqr=20+7*Qoqr

By Wardrop's Equilibrium Principle, the travel time (cost) on each used route must be equal. Therefore Copr=Coqr.

OR

25+6*Qopr=20+7*Qoqr

5+6*Qopr=7*Qoqr

Qoqr=5/7+6*Qopr/7

By the conservation of flow principle

Qoqr+Qopr=6

Qopr=6Qoqr

By substitution

Qoqr=5/7+6/7(6Qoqr)=41/76*Qoqr/7

13*Qoqr=41

Qoqr=41/13=3.15

Qopr=2.84

Check

42.01=25+6(2.84)

42.05=20+7(3.15)

Check (within rounding error)

Link Attributes
Link Link Performance Function Flow Time
o-p-r Copr=25+6*Qopr 2.84 42.01
o-q-r Coqr=20+7*Qoq 3.15 42.01

or expanding back to the original table:

Link Attributes
Link Link Performance Function Flow Time
o-p Cop=5*Qop 2.84 14.2
p-r Cpr=25+Qpr 2.84 27.84
o-q Coq=20+2*Qoq 3.15 26.3
q-r Cqr=5*Qqr 3.15 15.75

User Equilibrium: Total Delay = 42.01 * 6 = 252.06

Part B

What is the system optimal assignment?

Conservation of Flow:

Qopr+Qoqr=6

TotalDelay=Qopr(25+6*Qopr)+Qoqr(20+7*Qoqr)

25Qopr+6Qopr2+(6Qopr)(20+7(6Qopr))

25Qopr+6Qopr2+(6Qopr)(627Qopr))

25Qopr+6Qopr2+37262Qopr42Qopr+7Qopr2

13Qopr279Qopr+372

Analytic Solution requires minimizing total delay

δC/δQ=26Qopr79=0

Qopr=79/26=3.04

Qoqr=6Qopr=2.96

And we can compute the SO travel times on each path

Copr,SO=25+6*3.04=43.24

Coqr,SO=20+7*2.96=40.72

Note that unlike the UE solution, Copr,SO>Coqr,SO

Total Delay = 3.04(25+ 6*3.04) + 2.96(20+7*2.96) = 131.45+120.53= 251.98

Note: one could also use software such as a "Solver" algorithm to find this solution.

Part C

What is the Price of Anarchy?

User Equilibrium: Total Delay =252.06 System Optimal: Total Delay = 251.98

Price of Anarchy = 252.06/251.98 = 1.0003 < 4/3

[[Template:BOOKCATEGORY/Solutions]]