Graph Theory/Juggling with Binomial Coefficients

From testwiki
Jump to navigation Jump to search

Introduction

Fluency with binomial coefficients is a great help in combinatorial arguments about graphs. You should learn to juggle with binomial coefficients as easily as you juggle with normal algebraic equations.

Techniques

  • Substitute specific values in the general equations, e.g. careful choice of x and y in:
(x+y)n=k=0n(nk)xnkyk.
  • Sledgehammer proof using recursion formula. You may find it helpful to 'chase' binomial coefficients on a diagram of Pascal's triangle.
  • Differentiation of a previous identity to get a new one.
  • Combinatorial arguments about permutations and combinations.

Worked Examples

Template:ExampleRobox To get:

k=0n(nk)=2n

Put x=1 and y=1 in

(x+y)n=k=0n(nk)xnkyk.

Template:Robox/Close

The Identities

(nk)=(nnk)
(nk)=nk(n1k1)
(n1k)(n1k1)=n2kn(nk).
(nk)=(n1k1)+(n1k)
k=0n(nk)2=(2nn).
k=0n(nk)(nnk)=(2nn).


k=0nk(nk)=n2n1
k=0nk2(nk)=(n+n2)2n2
m=0n(mj)(nmkj)=(n+1k+1)
m=0n(mk)=(n+1k+1).
k=0n2(nkk)=F(n+1)

where F(n) denote the nth Fibonacci number.

j=kn(jk)=(n+1k+1)
j=0k(1)j(nj)=(1)k(n1k)
j=0n(1)j(nj)=0
i=0ni(ni)2=n2(2nn)
i=0ni2(ni)2=n2(2n2n1).
k=qn(nk)(kq)=2nq(nq)

Applications

  • Find probability of cycles of certain length in a permutation.

Template:BookCat