Help:Formulas

From testwiki
Jump to navigation Jump to search

Template:Wikibooks help

MediaWiki uses a subset of AMS-LaTeX markup, a superset of LaTeX markup which is in turn a superset of TeX markup, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on user preferences and the complexity of the expression. In the future, as more browsers become smarter, it will be able to generate enhanced HTML or even MathML in many cases.

Technicals

Syntax

Math markup goes inside <math> ... </math>. The edit toolbar has a button for this.

Similar to HTML, in TeX extra spaces and newlines are ignored.

The TeX code has to be put literally: MediaWiki templates, predefined templates, and parameters cannot be used within math tags: pairs of double braces are ignored and "#" gives an error message. However, math tags work in the then and else part of #if, etc.

Rendering

The PNG colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem.

The alt text of the PNG images, which is displayed to visually impaired and other readers who cannot see the images, defaults to the wikitext that produced the image, excluding the <math> and </math>. You can override this by explicitly specifying an alt attribute for the math element. For example, <math alt="Square root of pi">\sqrt{\pi}</math> generates an image π whose alt text is "Square root of pi".

Apart from function and operator names, as is customary in mathematics, variables and letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \text or \mathrm. For example, <math>\text{abc}</math> gives abc. This does not work for special characters; they are ignored unless the whole <math> expression is rendered in HTML:

  • <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math>
  • <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,\!</math>

gives:

  • abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ
  • abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ

TeX vs HTML

Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML.

TeX syntax (forcing PNG) TeX rendering HTML syntax HTML rendering
<math>\alpha\,\!</math> α {{math|<var>&alpha;</var>}} Template:Math
<math>\sqrt{2}</math> 2 {{math|{{radical|2}}}} Template:Math
<math>\sqrt{1-e^2}</math> 1e2 {{math|{{radical|1 − ''e''²}}}} Template:Math

The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’.

&alpha; &beta; &gamma; &delta; &epsilon; &zeta;
&eta; &theta; &iota; &kappa; &lambda; &mu; &nu;
&xi; &omicron; &pi; &rho; &sigma; &sigmaf;
&tau; &upsilon; &phi; &chi; &psi; &omega;
&Gamma; &Delta; &Theta; &Lambda; &Xi; &Pi;
&Sigma; &Phi; &Psi; &Omega;
α β γ δ ε ζ
η θ ι κ λ μ ν
ξ ο π ρ σ ς
τ υ φ χ ψ ω
Γ Δ Θ Λ Ξ Π
Σ Φ Ψ Ω
&int; &sum; &prod; &radic; &minus; &plusmn; &infin;

&asymp; &prop; {{=}} &equiv; &ne; &le; &ge; &times; &middot; &divide; &part; &prime; &Prime; &nabla; &permil; &deg; &there4; &Oslash; &oslash; &isin; &notin; &cap; &cup; &sub; &sup; &sube; &supe; &not; &and; &or; &exist; &forall; &rArr; &hArr; &rarr; &harr; &uarr; &alefsym; - &ndash; &mdash;

∫ ∑ ∏ √ − ± ∞
≈ ∝ = ≡ ≠ ≤ ≥
× · ÷ ∂ ′ ″
∇ ‰ ° ∴ Ø ø
∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇
¬ ∧ ∨ ∃ ∀
⇒ ⇔ → ↔ ↑
ℵ - – —

Both HTML and TeX have advantages in some situations.

Pros of HTML

  1. Formulas in HTML behave more like regular text. In-line HTML formulas always align properly with the rest of the HTML text and, to some degree, can be cut-and-pasted. The formula's background and font size match the rest of HTML contents and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulas. The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulas without any manual intervention. Formulas typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets).
  2. Pages using HTML code for formulas will load faster.
  3. The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g. {{math|''i''}} for the imaginary unit and {{math|<var>i</var>}} for an arbitrary index variable.

Pros of TeX

  1. TeX is semantically more precise than HTML.
    1. In TeX, "<math>x</math>" means "mathematical variable x", whereas in HTML "x" is generic and somewhat ambiguous.
    2. On the other hand, if you encode the same formula as "{{math|<var>x</var>}}", you get the same visual result Template:Math and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it. However, since there are far more readers than editors, this effort is worth considering.
    One consequence of this is that TeX code can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It is true that the current situation is not ideal, but that is not a good reason to drop information/contents. Another consequence of this is that TeX can be converted to MathML for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader's graphic device.
  2. TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX. TeX has been specifically designed for typesetting formulas, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page. Once a formula is done correctly in TeX, it will render reliably, whereas the success of HTML formulas is somewhat dependent on browsers or versions of browsers. Another aspect of this dependency is fonts: the serif font used for rendering formulas is browser-dependent and it may be missing some important glyphs. While browsers are generally able to substitute a matching glyph from a different font family, this may not work for combined glyphs (compare ‘ Template:IPA ’ and ‘  ’).Template:Ref
  3. TeX formulas, by default, render larger and are usually more readable than HTML formula and are not dependent on client-side browser resources, such as fonts, and so the results are more reliably WYSIWYG.
  4. While TeX does not assist you in finding HTML codes or Unicode values (which you can obtain by viewing the HTML source in your browser), cutting and pasting from a TeX PNG in Wikipedia into simple text will return the LaTeX source.

In some cases it may be the best choice to use neither TeX nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example).

Functions, symbols, special characters

Accents/diacritics

\dot{a}, \ddot{a}, \acute{a}, \grave{a} a˙,a¨,a´,a`
\check{a}, \breve{a}, \tilde{a}, \bar{a} aˇ,a˘,a~,a¯
\hat{a}, \widehat{a}, \vec{a} a^,a^,a

Standard functions

\exp_a b = a^b, \exp b = e^b, 10^m expab=ab,expb=eb,10m
\ln c, \lg d = \log e, \log_{10} f lnc,lgd=loge,log10f
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f sina,cosb,tanc,cotd,sece,cscf
\arcsin h, \arccos i, \arctan j arcsinh,arccosi,arctanj
\sinh k, \cosh l, \tanh m, \coth n sinhk,coshl,tanhm,cothn
\operatorname{sh} k, \operatorname{ch} l, \operatorname{th} m, \operatorname{coth} n shk,chl,thm,cothn
\operatorname{argsh} o, \operatorname{argch} p, \operatorname{argth} q argsho,argchp,argthq
\sgn r, \left\vert s \right\vert sgnr,|s|

Bounds

\min x, \max y, \inf s, \sup t minx,maxy,infs,supt
\lim u, \liminf v, \limsup w limu,lim infv,lim supw
\dim p, \deg q, \det m, \ker\phi dimp,degq,detm,kerϕ

Projections

\Pr j, \hom l, \lVert z \rVert, \arg z Prj,homl,z,argz

Differentials and derivatives

dt, \operatorname{d}t, \partial t, \nabla\psi dt,dt,t,ψ
\operatorname{d}y/\operatorname{d}x, {\operatorname{d}y\over\operatorname{d}x}, {\partial^2\over\partial x_1\partial x_2}y dy/dx,dydx,2x1x2y
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y ,,f,f,f,f(3),y˙,y¨

Letter-like symbols or constants

\infty, \alef, \complement, \backepsilon, \eth, \Finv, \hbar ,,,,ð,,
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS ,ı,ȷ,𝕜,,,,,

Modular arithmetic

s_k \equiv 0 \pmod{m} sk0(modm)
a\,\bmod\,b amodb
\gcd(m, n), \operatorname{lcm}(m, n) gcd(m,n),lcm(m,n)
\mid, \nmid, \shortmid, \nshortmid ,,,

Radicals

\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{x^3+y^3 \over 2} ,2,n,x3+y323

Operators

+, -, \pm, \mp, \dotplus +,,±,,
\times, \div, \divideontimes, /, \backslash ×,÷,,/,
\cdot, * \ast, \star, \circ, \bullet ,*,,,
\boxplus, \boxminus, \boxtimes, \boxdot ,,,
\oplus, \ominus, \otimes, \oslash, \odot ,,,,
\circleddash, \circledcirc, \circledast ,,
\bigoplus, \bigotimes, \bigodot ,,

Sets

\{ \}, \O \empty \emptyset, \varnothing {},,
\in, \notin \not\in, \ni, \not\ni ,∉,,∌
\cap, \Cap, \sqcap, \bigcap, \setminus, \smallsetminus ,,,,,
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus ,,,,,,
\subset, \Subset, \sqsubset ,,
\supset, \Supset, \sqsupset ,,
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq ,,,,
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq ,,,,
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq ,,,
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq ,,,

Relations

=, \ne \neq, \equiv, \not\equiv =,,,≢
\doteq, \overset{\underset{\mathrm{def}}{}}{=}, := ,=def,:=
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong ,,,,,,,,
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto ,,,,,
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot <,,,≪̸,,⋘̸,
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot >,,,≫̸,,⋙̸,
\le \leq, \lneq, \leqq, \nleqq, \lneqq, \lvertneqq ,,,,,
\ge \geq, \gneq, \geqq, \ngeqq, \gneqq, \gvertneqq ,,,,,
\lessgtr \lesseqgtr \lesseqqgtr \gtrless \gtreqless \gtreqqless
\leqslant, \nleqslant, \eqslantless ,,
\geqslant, \ngeqslant, \eqslantgtr ,,
\lesssim, \lnsim, \lessapprox, \lnapprox ,,,
\gtrsim, \gnsim, \gtrapprox, \gnapprox ,,,
\prec, \nprec, \preceq, \npreceq, \precneqq ,,,,
\succ, \nsucc, \succeq, \nsucceq, \succneqq ,,,,
\preccurlyeq, \curlyeqprec ,
\succcurlyeq, \curlyeqsucc ,
\precsim, \precnsim, \precapprox, \precnapprox ,,,
\succsim, \succnsim, \succapprox, \succnapprox ,,,

Geometric

\parallel, \nparallel, \shortparallel, \nshortparallel ,,,
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ ,,,,45
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar ,,,,,
\bigcirc, \triangle \bigtriangleup, \bigtriangledown ,,
\vartriangle, \triangledown ,
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright ,,,

Logic

\forall, \exists, \nexists ,,
\therefore, \because, \And ,,&
\or \lor \vee, \curlyvee, \bigvee ,,
\and \land \wedge, \curlywedge, \bigwedge ,,
\bar{q}, \overline{q}, \lnot \neg, \not\operatorname{R}, \bot, \top q¯,q,¬¬,R,,
\vdash \dashv, \vDash, \Vdash, \models ,,,
\Vvdash \nvdash \nVdash \nvDash \nVDash
\ulcorner \urcorner \llcorner \lrcorner

Arrows

\Rrightarrow, \Lleftarrow ,
\Rightarrow, \nRightarrow, \Longrightarrow \implies ,,
\Leftarrow, \nLeftarrow, \Longleftarrow ,,
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff ,,
\Uparrow, \Downarrow, \Updownarrow ,,
\rightarrow \to, \nrightarrow, \longrightarrow ,,
\leftarrow \gets, \nleftarrow, \longleftarrow ,,
\leftrightarrow, \nleftrightarrow, \longleftrightarrow ,,
\uparrow, \downarrow, \updownarrow ,,
\nearrow, \swarrow, \nwarrow, \searrow ,,,
\mapsto, \longmapsto ,
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow

Special

\amalg \P \S \% \dagger \ddagger \ldots \cdots ⨿§%
\smile \frown \wr \triangleleft \triangleright
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp ,,,,,,,

Unsorted (new stuff)

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq
\Coppa\coppa\varcoppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma ϘϙϙϜϞϟϠϡϚϛϛ

For a little more semantics on these symbols, see the brief TeX Cookbook.

Larger expressions

Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 a2 a2
Subscript a_2 a2 a2
Grouping 10^{30} a^{2+2} 1030a2+2 1030a2+2
a_{i,j} b_{f'} ai,jbf ai,jbf
Combining sub & super without and with horizontal separation x_2^3 x23
{x_2}^3 x23
Super super 10^{10^{8}} 10108
Preceding and/or additional sub & super \sideset{_1^2}{_3^4}\prod_a^b 3412ab
{}_1^2\!\Omega_3^4 12Ω34
Stacking \overset{\alpha}{\omega} ωα
\underset{\alpha}{\omega} ωα
\overset{\alpha}{\underset{\gamma}{\omega}} ωγα
\stackrel{\alpha}{\omega} ωα
Derivative (f in italics may overlap primes in HTML) x', y'', f', f'' x,y,f,f x,y,f,f
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} x,y x,y
Derivative (wrong in PNG) x\prime, y\prime\prime x,y x,y
Derivative dots \dot{x}, \ddot{x} x˙,x¨
Underlines, overlines, vectors \hat a \ \bar b \ \vec c a^ b¯ c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} ab cd def^
\overline{g h i} \ \underline{j k l} ghi jkl_
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C An+μ1BTn±i1C
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} 1+2++1005050
Underbraces \underbrace{ a+b+\cdots+z }_{26} a+b++z26
Sum \sum_{k=1}^N k^2 k=1Nk2
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 k=1Nk2
Sum in a fraction (default \textstyle) \frac{\sum_{k=1}^N k^2}{a} k=1Nk2a
Sum in a fraction (force \displaystyle) \frac{\displaystyle \sum_{k=1}^N k^2}{a} k=1Nk2a
Product \prod_{i=1}^N x_i i=1Nxi
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i i=1Nxi
Coproduct \coprod_{i=1}^N x_i i=1Nxi
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i i=1Nxi
Limit \lim_{n \to \infty}x_n limnxn
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n limnxn
Integral \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integral (alternate limits style) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx NNexdx
Integral (force \textstyle, alternate limits style) \textstyle \int_{-N}^{N} e^x\, dx NNexdx
Double integral \iint\limits_D \, dx\,dy Ddxdy
Triple integral \iiint\limits_E \, dx\,dy\,dz Edxdydz
Quadruple integral \iiiint\limits_F \, dx\,dy\,dz\,dt Fdxdydzdt
Line or path integral \int_{(x,y)\in C} x^3\, dx + 4y^2\, dy (x,y)Cx3dx+4y2dy
Closed line or path integral \oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy (x,y)Cx3dx+4y2dy
Intersections \bigcap_{i=_1}^n E_i i=1nEi
Unions \bigcup_{i=_1}^n E_i i=1nEi

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 or {2 \over 4}=0.5 24=0.5
Small fractions \tfrac{2}{4} = 0.5 24=0.5
Large (normal) fractions \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a 24=0.52c+2d+24=a
Large (nested) fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a 2c+2d+24=a
Binomial coefficients \binom{n}{k} (nk)
Small binomial coefficients \tbinom{n}{k} (nk)
Large (normal) binomial coefficients \dbinom{n}{k} (nk)
Matrices
\begin{matrix}
 x & y \\
 z & v
\end{matrix}
xyzv
\begin{vmatrix}
 x & y \\
 z & v
\end{vmatrix}
|xyzv|
\begin{Vmatrix}
 x & y \\
 z & v
\end{Vmatrix}
xyzv
\begin{bmatrix}
 0 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & 0
\end{bmatrix}
[0000]
\begin{Bmatrix}
 x & y \\
 z & v
\end{Bmatrix}
{xyzv}
\begin{pmatrix}
 x & y \\
 z & v
\end{pmatrix}
(xyzv)
\bigl( \begin{smallmatrix}
 a&b\\ c&d
\end{smallmatrix} \bigr)
(abcd)
Case distinctions
f(n) =
\begin{cases}
 n/2, & \text{if }n\text{ is even} \\
 3n+1, & \text{if }n\text{ is odd}
\end{cases}
f(n)={n/2,if n is even3n+1,if n is odd
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
 & = a^2+2ab+b^2 \\
\end{align}
f(x)=(a+b)2=a2+2ab+b2
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
 & = a^2-2ab+b^2 \\
\end{alignat}
f(x)=(ab)2=a22ab+b2
Multiline equations (must define number of columns used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
 z & = & a \\
 f(x,y,z) & = & x + y + z
\end{array}
z=af(x,y,z)=x+y+z
Multiline equations (more)
\begin{array}{lcr}
 z & = & a \\
 f(x,y,z) & = & x + y + z
\end{array}
z=af(x,y,z)=x+y+z
Breaking up a long expression so that it wraps when necessary, at the expense of destroying correct spacing

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x)=n=0anxn=a0+a1x+a2x2+

Simultaneous equations
\begin{cases}
 3x + 5y + z \\
 7x - 2y + 4z \\
 -6x + 3y + 2z
\end{cases}
{3x+5y+z7x2y+4z6x+3y+2z
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
abS001011101110

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) (12)
Good \left ( \frac{1}{2} \right ) (12)

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) (ab)
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack [ab][ab]
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace {ab}{ab}
Angle brackets \left \langle \frac{a}{b} \right \rangle ab
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| |ab|cd
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil abcd
Slashes and backslashes \left / \frac{a}{b} \right \backslash /ab\
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow ababab
Delimiters can be mixed,
as long as \left and \right match
\left [ 0,1 \right )
\left \langle \psi \right |
[0,1)
ψ|
Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X AB}X
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ ((((]]]]
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle {{{{
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| ||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash ////\\\\

Alphabets and typefaces

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta ABΓΔEZ
\Eta \Theta \Iota \Kappa \Lambda \Mu HΘIKΛM
\Nu \Xi \Pi \Rho \Sigma \Tau NΞΠPΣT
\Upsilon \Phi \Chi \Psi \Omega ΥΦXΨΩ
\alpha \beta \gamma \delta \epsilon \zeta αβγδϵζ
\eta \theta \iota \kappa \lambda \mu ηθικλμ
\nu \xi \pi \rho \sigma \tau νξπρστ
\upsilon \phi \chi \psi \omega υϕχψω
\varepsilon \digamma \varkappa \varpi εϝϰϖ
\varrho \varsigma \vartheta \varphi ϱςϑφ
Blackboard bold/scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} 𝔸𝔹𝔻𝔼𝔽𝔾
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} 𝕀𝕁𝕂𝕃𝕄
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} 𝕆𝕊𝕋
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} 𝕌𝕍𝕎𝕏𝕐
Boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} 𝐀𝐁𝐂𝐃𝐄𝐅𝐆
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} 𝐇𝐈𝐉𝐊𝐋𝐌
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} 𝐍𝐎𝐏𝐐𝐑𝐒𝐓
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} 𝐔𝐕𝐖𝐗𝐘𝐙
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} 𝐚𝐛𝐜𝐝𝐞𝐟𝐠
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} 𝐡𝐢𝐣𝐤𝐥𝐦
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} 𝐧𝐨𝐩𝐪𝐫𝐬𝐭
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} 𝐮𝐯𝐰𝐱𝐲𝐳
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} 𝟎𝟏𝟐𝟑𝟒
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} 𝟓𝟔𝟕𝟖𝟗
Boldface (Greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} ABΓΔEZ
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} HΘIKΛM
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} NΞΠPΣT
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} ΥΦXΨΩ
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} αβγδϵζ
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} ηθικλμ
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} νξπρστ
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} υϕχψω
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\varkappa} \boldsymbol{\varpi} εϝϰϖ
\boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\vartheta} \boldsymbol{\varphi} ϱςϑφ
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} 𝐴𝐵𝐶𝐷𝐸𝐹𝐺
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} 𝐻𝐼𝐽𝐾𝐿𝑀
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} 𝑁𝑂𝑃𝑄𝑅𝑆𝑇
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} 𝑈𝑉𝑊𝑋𝑌𝑍
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} 𝑎𝑏𝑐𝑑𝑒𝑓𝑔
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} 𝑖𝑗𝑘𝑙𝑚
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} 𝑛𝑜𝑝𝑞𝑟𝑠𝑡
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} 𝑢𝑣𝑤𝑥𝑦𝑧
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} 01234
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} 56789
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} ABCDEFG
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} HIJKLM
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} NOPQRST
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} UVWXYZ
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} abcdefg
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} hijklm
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} nopqrst
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} uvwxyz
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} 01234
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} 56789
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} 𝔄𝔅𝔇𝔈𝔉𝔊
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} 𝔍𝔎𝔏𝔐
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} 𝔑𝔒𝔓𝔔𝔖𝔗
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} 𝔘𝔙𝔚𝔛𝔜
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} 𝔞𝔟𝔠𝔡𝔢𝔣𝔤
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} 𝔥𝔦𝔧𝔨𝔩𝔪
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} 𝔫𝔬𝔭𝔮𝔯𝔰𝔱
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} 𝔲𝔳𝔴𝔵𝔶𝔷
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} 01234
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} 56789
Calligraphy/script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} 𝒜𝒞𝒟𝒢
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} 𝒥𝒦
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} 𝒩𝒪𝒫𝒬𝒮𝒯
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} 𝒰𝒱𝒲𝒳𝒴𝒵
Hebrew symbols
\aleph \beth \gimel \daleth

Mixed text faces

Feature Syntax How it looks rendered
Non-italicised characters \text{xyz} xyz xyz
Mixed italics (bad) \text{if} n \text{is even} ifnis even ifnis even
Mixed italics (good) \text{if }n\text{ is even} if n is even if n is even
Mixed italics (alternative: ~ or "\ " forces a space) \text{if}~n\ \text{is even} ifn is even ifn is even

Color

Equations can use color:

  • {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
    x2+2x1
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x1,2=b±b24ac2a
Colors supported
Apricot Aquamarine Bittersweet Black
Blue BlueGreen BlueViolet BrickRed
Brown BurntOrange CadetBlue CarnationPink
Cerulean CornflowerBlue Cyan Dandelion
DarkOrchid Emerald ForestGreen Fuchsia
Goldenrod Gray Green GreenYellow
JungleGreen Lavender LimeGreen Magenta
Mahogany Maroon Melon MidnightBlue
Mulberry NavyBlue OliveGreen Orange
OrangeRed Orchid Peach Periwinkle
PineGreen Plum ProcessBlue Purple
RawSienna Red RedOrange RedViolet
Rhodamine RoyalBlue RoyalPurple RubineRed
Salmon SeaGreen Sepia SkyBlue
SpringGreen Tan TealBlue Thistle
Turquoise Violet VioletRed White
WildStrawberry Yellow YellowGreen YellowOrange

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people.

Formatting issues

Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
Double quad space a \qquad b ab
Quad space a \quad b ab
Text space, forced space a\ b
a~b
a b
Text space without PNG conversion a \text{ } b a b
Large space a\;b ab
Medium space a\>b [not supported]
a\;\;\!\!b
ab
Small space a\,b ab
No space ab ab
Small negative space a\!b ab

Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):

<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+

This can be remedied by putting a pair of braces { } around the whole expression:

<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+

Alignment with normal text flow

Due to the default CSS

img.tex { vertical-align: middle; }

an inline expression like NNexdx should look good.

If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math> and play with the vertical-align argument until you get it right. However, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Forced PNG rendering

To force the formula to render as PNG, add \, (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use \! at the end of a formula to force PNG even in "HTML if possible" mode, unlike \,. If it is understandable to have \! at the end of a formula for some reason, it may also be used at the beginning or the combinations \,\! and \!\, (a negative and positive space which cancel out) may appear anywhere within the math expression to force PNG.

Forcing PNG can be useful to keep the rendering of formulas in a proof consistent, for example, or to fix formulas that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} ac+2
a^{c+2} \, ac+2
a^{\,\!c+2} ac+2 (this example uses \,\! in the middle of the expression.)
a^{b^{c+2}} abc+2 (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, abc+2 (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 abc+25 (due to "" correctly displayed, no code "\!" needed)
a^{b^{c+2}}\! abc+2
\int_{-N}^{N} e^x\, dx NNexdx

This has been tested with most of the formulas on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

Examples of implemented TeX formulas

Template:Center/top

Commutative diagram

XfZggYfW

<math>
\begin{array}{lcl}
 & X & \overset{f}\longrightarrow & Z & \\
 &g \downarrow &&\downarrow g'\\
 &Y & \underset{f'}\longrightarrow& W & \\
\end{array}
</math>


Quadratic polynomial

ax2+bx+c=0

<math>ax^2 + bx + c = 0</math>

Quadratic polynomial (force PNG rendering)

ax2+bx+c=0

<math>ax^2 + bx + c = 0\,\!</math>

Quadratic formula

x=b±b24ac2a

<math>x={-b\pm\sqrt{b^2-4ac} \over 2a}</math>

Tall parentheses and fractions

2=((3x)×23x)

<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>
Snew=Sold(5T)22

 <math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
 

Integrals

axasf(y)dyds=axf(y)(xy)dy

<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

Summation

i=0n1i

<math>\sum_{i=0}^{n-1} i</math>
m=1n=1m2n3m(m3n+n3m)

<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

Differential equation

u+p(x)u+q(x)u=f(x),x>a

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

Complex numbers

|z¯|=|z|,|(z¯)n|=|z|n,arg(zn)=narg(z)

<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

Limits

limzz0f(z)=f(z0)

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

Integral equation

ϕn(κ)=14π2κ20sin(κR)κRR[R2Dn(R)R]dR

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

Example

ϕn(κ)=0.033Cn2κ11/3,1L0κ1l0

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases

f(x)={11x<012x=01x2otherwise

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & \text{otherwise}
 \end{cases}
 </math>

Prefixed subscript

pFq(a1,,ap;c1,,cq;z)=n=0(a1)n(ap)n(c1)n(cq)nznn!

 <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
 \frac{z^n}{n!}</math>

Fraction and small fraction

ab ab
<math>\frac{a}{b}\ \tfrac{a}{b}</math>

Repeating fraction

0.1000101010
<math>0.10\overline{00101010}</math>

Area of a quadrilateral

S=dDsinα
<math>S=dD\,\sin\alpha\!</math>

Volume of a sphere-stand

V=16πh[3(r12+r22)+h2]
<math>V=\tfrac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]</math>

Template:Center/end

Template:Wikibooks editor navigation