High School Mathematics Extensions/Logic/Solutions

From testwiki
Jump to navigation Jump to search

Template:High School Mathematics Extensions/TOC

[[../|Logic]]

Template:High School Mathematics Extensions/Solutions/TOC

Compound truth tables exercises

1. NAND: x NAND y = NOT (x AND y)

The NAND function
x y x AND y NOT (x AND y)
0 0 Template:Center Template:Center
0 1 Template:Center Template:Center
1 0 Template:Center Template:Center
1 1 Template:Center Template:Center

2. NOR: x OR y = NOT (x OR y)

The NOR function
x y x OR y NOT (x OR y)
0 0 Template:Center Template:Center
0 1 Template:Center Template:Center
1 0 Template:Center Template:Center
1 1 Template:Center Template:Center

3. XOR: x XOR y is true if and ONLY if either x or y is true.

The XOR function
x y x OR y
0 0 Template:Center
0 1 Template:Center
1 0 Template:Center
1 1 Template:Center


Produce truth tables for: 1. xyz

x

y

z

xyz

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

2. x'y'z'

x

y

z

x'y'z'

0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

0

3. xyz + xy'z

x

y

z

xyz + xy'z

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

1

1

1

0

0

1

1

1

1

4. xz

x

z

xz

0

0

0

0

1

0

1

0

0

1

1

1

5. (x + y)'

x

y

(x + y)'

0

0

1

0

1

0

1

0

0

1

1

0

6. x'y'

x

y

x'y'

0

0

1

0

1

0

1

0

0

1

1

0

7. (xy)'

x

y

(xy)'

0

0

1

0

1

1

1

0

1

1

1

0

8. x' + y'

x

y

x' + y'

0

0

1

0

1

1

1

0

1

1

1

0

Laws of Boolean algebra exercises

1.

1. z = ab'c' + ab'c + abc
x=abc+abc+abc=abc+c(ab+ab)=abc+ca
2. z = ab(c + d)
x=ab(c+d)=abc+abd
3. z = (a + b)(c + d + f)
x=(a+b)(c+d+f)=ac+ad+af+bc+bd+bf
4. z = a'c(a'bd)' + a'bc'd' + ab'c
x=ac(abd)+abcd+abc=ac(a+(bd))+abcd+abc=aca+ac(bd)+abcd+abc=ac(b+d)+abcd+abc=acb+acd+abcd+abc
5. z = (a' + b)(a + b + d)d'
x=(a+b)(a+b+d)d=(a+b)(a+b+d)d=(aa+ab+ad+ba+bb+bd)d=(ab+ad+ba+b+bd)d=(b(a+a)+ad+b+bd)d=(ad+b+bd)d=add+bd+bdd=bd

2. Show that x + yz is equivalent to (x + y)(x + z)

x=(x+y)(x+z)=xx+yx+xz+yz=x(x+y+z)+yz=x+yz

Implications exercises

  1. Decide whether the following propositions are true or false:
    1. If 1 + 2 = 3, then 2 + 2 = 5 is false because something that's true implies something that's false
    2. If 1 + 1 = 3, then fish can't swim is true because 1+1 is not 3
  2. Show that the following pair of propositions are equivalent
    1. xy : yx
We use truth tables for this
The NAND function
x y xy yx
0 0 Template:Center Template:Center
0 1 Template:Center Template:Center
1 0 Template:Center Template:Center
1 1 Template:Center Template:Center
The columns in the table are the same for both propositions, thus they are equivalent.

Logic Puzzles exercises

Please go to Logic puzzles.