High School Mathematics Extensions/Supplementary/Differentiation/Solutions

From testwiki
Jump to navigation Jump to search

Template:High School Mathematics Extensions TOC

Differentiate from first principle

1. f(z)=3z2 (We know that if p(x)=xn then p(x)=nxn1)

2.

f(z)=(1z)2=z22z+1
f(z)=2z2

3.

f(z)=limh01(1zh)21(1z)2h=limh01h(1(1zh)21(1z)2)=limh01h((1z)2(1zh)2(1z)2(1zh)2(1zh)2(1z)2)=limh01h(1z)2(1zh)2(1zh)2(1z)2=limh01hz22z+1(z2+2hz2z+h22h+1)(1zh)2(1z)2=limh01hz22z+1z22hz+2zh2+2h1)(1zh)2(1z)2=limh01h2hzh2+2h(1zh)2(1z)2=limh02zh+2(1zh)2(1z)2=2z+2(1z)2(1z)2=2z+2(1z)4=2(1z)(1z)4=2(1z)3

4.

f(z)=(1z)3=z3+3z23z+1
f(z)=3z2+6z3

5. if

f(x)=g(x)+h(x)

then

f(x)=limk0f(x+k)f(x)k=limk0(g(x+k)+h(x+k))(g(x)+h(x))k=limk0g(x+k)g(x)+h(x+k)h(x)k=limk0(g(x+k)g(x)h+h(x+k)h(x)k)=limk0g(x+k)g(x)h+limk0h(x+k)h(x)k=g(x)+h(x)

Differentiating f(z) = (1 - z)^n

1.

f(z)=(1z)3=z3+3z23z+1
f(z)=3z2+6z3=3(z22z+1)=3(z1)2

2.

f(z)=(1+z)2=z2+2z+1
f(z)=2z+2=2(z+1)

3.

f(z)=(1+z)3=z3+3z2+3z+1
f(z)=3z2+6z+3=3(z2+2z+1)=3(z+1)2

4.

f(z)=1(1z)3
f(z)=limk01(1zk)31(1z)3k=limk01k(1(1zk)31(1z)3)=limk01k(1z)3(1zk)3(1zk)3(1z)3=limk01kz3+3z23z+1(z33kz2+3z23k2z+6kz3zk3+3k23k+1)(1zk)3(1z)3=limk01kz3+3z23z+1+z3+3kz23z2+3k2z6kz+3z+k33k2+3k1(1zk)3(1z)3=limk01k3kz2+3k2z6kz+k33k2+3k)(1zk)3(1z)3=limk03z2+3kz6z+k23k+3)(1zk)3(1z)3=3z26z+3(1z)3(1z)3=3z26z+3(1z)6=3(z22z+1)(1z)6=3(1z)2(1z)6=3(1z)4

Differentiation technique

1.

f(z)=1(1z)2f(z)=((1z)2)((1z)2)2=2(1z)(1z)4=2(1z)3

We use the result of the differentation of f(z)=(1-z)^n (f'(z) = -n(1-z)n-1)

2.

f(z)=1(1z)3f(z)=((1z)3)((1z)3)2=3(1z)2(1z)6=3(1z)4

3.

f(z)=1(1+z)3f(z)=((1+z)3)((1+z)3)2=3(1+z)2(1+z)6=3(1+z)4

We use the result of exercise 3 of the previous section f(z)= (1+z)3 -> f'(z)=3(1+z)^2

4.

f(z)=1(1z)nf(z)=((1z)n)((1z)n)2=n(1z)n1(1z)2n=n(1z)2n(n1)=n(1z)2nn+1=n(1z)n+1

We use the result of the differentation of f(z)=(1-z)^n (f'(z) = -n(1-z)n-1)