LMIs in Control/Click here to continue/Robust Controls/H2-Optimal State Feedback Synthesis

From testwiki
Jump to navigation Jump to search

Robust H2-Optimal State Feedback Synthesis

For systems with uncertain state parameters, a robust controller is needed. H2-optimal control is desirable in minimum-energy applications.

The System

The static formulation of the system is given as follows:

x˙(t)=A(δ)x(t)+B(δ)u(t)y(t)=C(δ)x(t)+D(δ)u(t)

Where x(t)n is the state and u(t)m is the input at any t

A(δ), B(δ), C(δ), and D(δ) are rational matrices with variance δΔ.

The Data

The state matrices are defined as:

A(δ)=A(δ),

B(δ)=[B1(δ)B2(δ)]

C(δ)=[C1(δ)C2(δ)]

D(δ)=[D11(δ)D12(δ)D21(δ)D22(δ)]

The LMI:H2-Optimal State Feedback Synthesis

Suppose P^(s,δ)=C(δ)(sIA(δ)) 1B(δ). Then the following are equivalent:

1. ||S(K(δ),P(δ))||H2 <γ for all δΔ.

2. K(δ)=Z(δ)X(δ) 1 for some Z(δ) and X(δ) such that X(δ)>0 for all δΔand

[A(δ)B2(δ)][X(δ)Z(δ)]+[X(δ)Z(δ)T][A(δ)TB(δ)2T]+B1(δ)B1(δ)T<0

[X(δ)(C1(δ)X(δ)+D12(δ)Z(δ))TC1(δ)X(δ)+D12(δ)Z(δ)W(δ)]>0

Trace(W(δ))<γ2

for all δΔ

Conclusion:

The method above can be used to find an H2-optimal robust state feedback controller for a system with uncertain parameters.

Implementation

This implementation requires Yalmip and Sedumi.

H2-Optimal State Feedback Synthesis

Full State Feedback Optimal H_inf LMI


Return to Main Page:

LMIs in Control: https://en.wikibooks.org/wiki/LMIs_in_Control Template:BookCat