LMIs in Control/pages/Entropy Bound for Affine Parametric Varying Systems

From testwiki
Jump to navigation Jump to search

The System

x˙(t)=Ax(t)+Bww(t),z(t)=Cz(θ)x(t)+Dzw(θ)w(t),

where Cz and Dzw depend affinely on parameter θp.

The Data

The matrices A,Bw,Cz(.),Dzw(.).

The Optimization Problem:

Solve the following semi-definite program

min{P0,γ2,λ,θ}γ2s.t.Dzw(θ)=0,[AP+PAPBwCz(θ)BwPγ2I0Cz(θ)0I]0,Tr(BwPBw)λ.

Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/02f31a2d7a22b2464dfe9212eb76409bda9439b1

Conclusion

The value function of the above semi-definite program returns a bound for γ-entropy of the system, which is defined as

Iγ(Hθ){γ22πlogdet(Iγ2Hθ(iω)Hθ(iω)*)dω,if Hθ<γ,otherwise.

Remark

When it is finite, Iγ(Hθ) is given by Tr(BwPBw) where P, is asymmetric matrix with the smallest possible maximum singular value among all solutions of a Riccati equation.


Return to Main Page:

Template:BookCat