LMIs in Control/pages/H2-Optimal Filter

From testwiki
Jump to navigation Jump to search

H2-Optimal Filter

The goal of optimal filtering is to design a filter that acts on the output ๐ณof the generalized plant and optimizes the transfer matrix from ๐ฐto the filtered output.

The System

Consider the continuous-time generalized LTI plant, with minimal state-space representation

๐ฑห™=๐€๐ฑ+๐1๐ฐ,

๐ณ=๐‚1๐ฑ+๐ƒ11๐ฐ,

๐ฒ=๐‚2๐ฑ+๐ƒ21๐ฐ,

where it is assumed that ๐€is Hurwitz. A continuous-time dynamic LTI filter with state-space representation

๐ฑห™f=๐€f๐ฑf+๐f๐ฒ,

๐ณ^=๐‚f๐ฑf+๐ƒf๐ฒ,

is designed to optimize the transfer function from ๐ฐto ๐ณ~=๐ณ๐ณ^, which is given by

๐~(s)=๐‚~1(s๐ˆ๐€~)1๐~1+๐ƒ~11,

where

๐€~=[๐€๐ŸŽ๐f๐‚2๐€f],

๐~1=[๐1๐f๐ƒ21],

๐‚~1=[๐‚1๐ƒf๐‚2๐‚f],

๐ƒ~11=๐ƒ11๐ƒf๐ƒ21.

Optimal Filtering seeks to minimize the given norm of the transfer function ๐~(s).There are two methods of synthesizing the H2-optimal filter.

Synthesis 1

Solve for ๐€nโ„nx×nx,๐nโ„nx×ny,๐‚fโ„nz×nx,๐ƒfโ„nz×ny,๐—,๐˜§nx,๐™§nz,and νโ„>0 that minimize the objective function J(ν)=ν, subject to

๐—,๐˜,๐™>0,

๐˜๐—>0,

tr(๐™)<ν,

๐ƒ11๐ƒf๐ƒ21=๐ŸŽ,

[๐™๐‚1๐ƒf๐‚2๐‚f*๐˜๐—**๐—]<0,

[๐˜๐€+๐€T๐˜+๐n๐‚2+๐‚2T๐nT๐€n+๐‚2T๐nT+๐€T๐—๐˜๐1+๐n๐ƒ21*๐€n+๐€nT๐—๐1+๐n๐ƒ21**๐ˆ]<0.

Synthesis 2

Synthesis 2 is identical to Synthesis 1, with the exception of the final two matrix inequality constraints:

[๐™๐1T๐˜T+๐ƒ21T๐nT๐1T๐—T+๐ƒ21T๐nT*๐˜๐—**๐—]<0,

[๐˜๐€+๐€T๐˜+๐n๐‚2+๐‚2T๐nT๐€n+๐‚2T๐nT+๐€T๐—๐‚1T๐‚2T๐ƒfT*๐€n+๐€nT๐‚fT**๐ˆ]<0.

Remark

In both cases, if ๐ƒ11=0and ๐ƒ210,then it is often simplest to choose ๐ƒf=0in order to satisfy the equality constraint (above).

Conclusion

In both cases, the optimal H2 filter is recovered by the state-space matrices ๐€f=๐—1๐€n,๐f=๐—1๐n,๐‚f,and ๐ƒf.

Remark

The problem of optimal filtering can alternatively be formulated as a special case of synthesizing a dynamic output "feedback" controller for the generalized plant given by

๐ฑห™=๐€๐ฑ+๐1๐ฐ,

๐ณ=๐‚1๐ฑ+๐ƒ11๐ฐ๐ฎ,

๐ฒ=๐‚2๐ฑ+๐ƒ21๐ฐ.

The synthesis methods presented in this page take advantage of the fact that the controller in this case is not a true feedback controller, as it only appears as a feedthrough term in the performance channel.

A list of references documenting and validating the LMI.

Return to Main Page:

Template:BookCat