LMIs in Control/pages/L2 gain of Lure systems

From testwiki
Jump to navigation Jump to search

The System

x˙(t)=Ax(t)+Bpp(t)+Bww(t),z(t)=Czx(t)pi(t)=ϕi(qi(t)),i=1,,npq=Cqx,0σϕi(σ)σ2 σ

The Data

The matrices A,Bp,Bw,Cq,Cz.


The Optimization Problem:

The following semi-definite problem should be solved.

min{P0,Λ=diag(λ1,,λnp)0,T=diag(τ1,,τnp)0}γ2s.t.[AP+PA+CzCzPBp+ACqΛ+CqTPBwBpP+ΛCqA+TCqΛCqBp+BpCqΛ2TΛCqBwBwPBwCqΛγ2I]0

Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/12a7039f9e3d966e24b43fd58a3cce3725282ed2

Conclusion

The value function returns the square of the smallest provable upper bound on the 2 gain of the Lure's system.

Remark

The Lyapunov function which is used to proof is similar to the one for the systems with unknown parameters.

Return to Main Page:

Template:BookCat